Suppr超能文献

缓解肺气道分割中的类别间梯度不平衡。

Alleviating Class-Wise Gradient Imbalance for Pulmonary Airway Segmentation.

出版信息

IEEE Trans Med Imaging. 2021 Sep;40(9):2452-2462. doi: 10.1109/TMI.2021.3078828. Epub 2021 Aug 31.

Abstract

Automated airway segmentation is a prerequisite for pre-operative diagnosis and intra-operative navigation for pulmonary intervention. Due to the small size and scattered spatial distribution of peripheral bronchi, this is hampered by a severe class imbalance between foreground and background regions, which makes it challenging for CNN-based methods to parse distal small airways. In this paper, we demonstrate that this problem is arisen by gradient erosion and dilation of the neighborhood voxels. During back-propagation, if the ratio of the foreground gradient to background gradient is small while the class imbalance is local, the foreground gradients can be eroded by their neighborhoods. This process cumulatively increases the noise information included in the gradient flow from top layers to the bottom ones, limiting the learning of small structures in CNNs. To alleviate this problem, we use group supervision and the corresponding WingsNet to provide complementary gradient flows to enhance the training of shallow layers. To further address the intra-class imbalance between large and small airways, we design a General Union loss function that obviates the impact of airway size by distance-based weights and adaptively tunes the gradient ratio based on the learning process. Extensive experiments on public datasets demonstrate that the proposed method can predict the airway structures with higher accuracy and better morphological completeness than the baselines.

摘要

自动气道分割是肺部介入术前诊断和术中导航的前提。由于外周支气管体积小且空间分布分散,这使得前景和背景区域之间存在严重的类不平衡,这使得基于 CNN 的方法难以解析远端小气道。在本文中,我们证明了这个问题是由于邻域体素的梯度侵蚀和扩张引起的。在反向传播过程中,如果前景梯度与背景梯度的比例较小,而类不平衡是局部的,那么前景梯度可以被它们的邻域侵蚀。这个过程会累积地增加从顶层到底层的梯度流中包含的噪声信息,从而限制了 CNN 中小结构的学习。为了解决这个问题,我们使用分组监督和相应的 WingsNet 来提供互补的梯度流,以增强浅层的训练。为了进一步解决大、小气道之间的类内不平衡问题,我们设计了一个通用联合损失函数,通过基于距离的权重消除气道大小的影响,并根据学习过程自适应地调整梯度比。在公共数据集上的广泛实验表明,与基线相比,所提出的方法可以更准确地预测气道结构,并具有更好的形态完整性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验