Suppr超能文献

一种用于人类对抽象艺术构图感知的深度学习框架。

A deep-learning framework for human perception of abstract art composition.

作者信息

Lelièvre Pierre, Neri Peter

机构信息

Laboratoire des systèmes perceptifs, Département d'études cognitives Science Arts Création Recherche (EA 7410), Paris, France.

École normale supérieure, PSL University, CNRS, Paris, France.

出版信息

J Vis. 2021 May 3;21(5):9. doi: 10.1167/jov.21.5.9.

Abstract

Artistic composition (the structural organization of pictorial elements) is often characterized by some basic rules and heuristics, but art history does not offer quantitative tools for segmenting individual elements, measuring their interactions and related operations. To discover whether a metric description of this kind is even possible, we exploit a deep-learning algorithm that attempts to capture the perceptual mechanism underlying composition in humans. We rely on a robust behavioral marker with known relevance to higher-level vision: orientation judgements, that is, telling whether a painting is hung "right-side up." Humans can perform this task, even for abstract paintings. To account for this finding, existing models rely on "meaningful" content or specific image statistics, often in accordance with explicit rules from art theory. Our approach does not commit to any such assumptions/schemes, yet it outperforms previous models and for a larger database, encompassing a wide range of painting styles. Moreover, our model correctly reproduces human performance across several measurements from a new web-based experiment designed to test whole paintings, as well as painting fragments matched to the receptive-field size of different depths in the model. By exploiting this approach, we show that our deep learning model captures relevant characteristics of human orientation perception across styles and granularities. Interestingly, the more abstract the painting, the more our model relies on extended spatial integration of cues, a property supported by deeper layers.

摘要

艺术构图(绘画元素的结构组织)通常具有一些基本规则和启发式方法,但艺术史并未提供用于分割单个元素、测量它们的相互作用及相关操作的定量工具。为了探究这种度量描述是否可行,我们利用一种深度学习算法,该算法试图捕捉人类构图背后的感知机制。我们依赖一种与高级视觉具有已知相关性的稳健行为标记:方向判断,即判断一幅画是否挂得“正立”。人类即使对于抽象画也能完成这项任务。为了解释这一发现,现有模型通常依据艺术理论的明确规则,依赖“有意义”的内容或特定图像统计数据。我们的方法并不遵循任何此类假设/方案,但它在更大的数据库上超越了先前的模型,该数据库涵盖了广泛的绘画风格。此外,我们的模型在一个旨在测试整幅画以及与模型中不同深度的感受野大小相匹配的绘画片段的新网络实验中的多项测量中,正确地再现了人类的表现。通过利用这种方法,我们表明我们的深度学习模型捕捉了跨风格和粒度的人类方向感知的相关特征。有趣的是,绘画越抽象,我们的模型就越依赖线索的扩展空间整合,这一特性由更深的层所支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验