School of Information Engineering, Wuhan University of Technology, Wuhan, China.
Department of Pathology, Huazhong University of Science and Technology, Tongji Medical College, Hubei Cancer Hospital, Wuhan, China.
PLoS One. 2021 May 12;16(5):e0251521. doi: 10.1371/journal.pone.0251521. eCollection 2021.
Pathologists generally pan, focus, zoom and scan tissue biopsies either under microscopes or on digital images for diagnosis. With the rapid development of whole-slide digital scanners for histopathology, computer-assisted digital pathology image analysis has attracted increasing clinical attention. Thus, the working style of pathologists is also beginning to change. Computer-assisted image analysis systems have been developed to help pathologists perform basic examinations. This paper presents a novel lightweight detection framework for automatic tumor detection in whole-slide histopathology images. We develop the Double Magnification Combination (DMC) classifier, which is a modified DenseNet-40 to make patch-level predictions with only 0.3 million parameters. To improve the detection performance of multiple instances, we propose an improved adaptive sampling method with superpixel segmentation and introduce a new heuristic factor, local sampling density, as the convergence condition of iterations. In postprocessing, we use a CNN model with 4 convolutional layers to regulate the patch-level predictions based on the predictions of adjacent sampling points and use linear interpolation to generate a tumor probability heatmap. The entire framework was trained and validated using the dataset from the Camelyon16 Grand Challenge and Hubei Cancer Hospital. In our experiments, the average AUC was 0.95 in the test set for pixel-level detection.
病理学家通常在显微镜下或数字图像上对组织活检进行泛焦、聚焦、缩放和扫描,以进行诊断。随着用于组织病理学的全切片数字扫描仪的快速发展,计算机辅助数字病理学图像分析引起了越来越多的临床关注。因此,病理学家的工作方式也开始发生变化。已经开发出计算机辅助图像分析系统来帮助病理学家进行基本检查。本文提出了一种用于全切片组织病理学图像中自动肿瘤检测的新型轻量级检测框架。我们开发了双放大组合(DMC)分类器,它是对 DenseNet-40 的修改,可仅使用 30 万个参数进行补丁级预测。为了提高多实例的检测性能,我们提出了一种带有超像素分割的改进自适应采样方法,并引入了一个新的启发式因子,即局部采样密度,作为迭代的收敛条件。在后置处理中,我们使用具有 4 个卷积层的 CNN 模型,根据相邻采样点的预测,对补丁级预测进行调节,并使用线性插值生成肿瘤概率热图。整个框架使用 Camelyon16 大挑战和湖北省肿瘤医院的数据集进行训练和验证。在我们的实验中,用于像素级检测的测试集的平均 AUC 为 0.95。