Suppr超能文献

入院时胸部 CT 对肺部受累的定量评估:对 COVID-19 患者缺氧和结局的影响。

Quantitative assessment of lung involvement on chest CT at admission: Impact on hypoxia and outcome in COVID-19 patients.

机构信息

Experimental Imaging Center, Radiology Unit, IRCCS San Raffaele Hospital, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.

Experimental Imaging Center, Radiology Unit, IRCCS San Raffaele Hospital, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.

出版信息

Clin Imaging. 2021 Sep;77:194-201. doi: 10.1016/j.clinimag.2021.04.033. Epub 2021 Apr 29.

Abstract

BACKGROUND

The aim of this study was to quantify COVID-19 pneumonia features using CT performed at time of admission to emergency department in order to predict patients' hypoxia during the hospitalization and outcome.

METHODS

Consecutive chest CT performed in the emergency department between March 1st and April 7th 2020 for COVID-19 pneumonia were analyzed. The three features of pneumonia (GGO, semi-consolidation and consolidation) and the percentage of well-aerated lung were quantified using a HU threshold based software. ROC curves identified the optimal cut-off values of CT parameters to predict hypoxia worsening and hospital discharge. Multiple Cox proportional hazards regression was used to analyze the capability of CT quantitative features, demographic and clinical variables to predict the time to hospital discharge.

RESULTS

Seventy-seven patients (median age 56-years-old, 51 men) with COVID-19 pneumonia at CT were enrolled. The quantitative features of COVID-19 pneumonia were not associated to age, sex and time-from-symptoms onset, whereas higher number of comorbidities was correlated to lower well-aerated parenchyma ratio (rho = -0.234, p = 0.04) and increased semi-consolidation ratio (rho = -0.303, p = 0.008). Well-aerated lung (≤57%), semi-consolidation (≥17%) and consolidation (≥9%) predicted worst hypoxemia during hospitalization, with moderate areas under curves (AUC 0.76, 0.75, 0.77, respectively). Multiple Cox regression identified younger age (p < 0.01), female sex (p < 0.001), longer time-from-symptoms onset (p = 0.049), semi-consolidation ≤17% (p < 0.01) and consolidation ≤13% (p = 0.03) as independent predictors of shorter time to hospital discharge.

CONCLUSION

Quantification of pneumonia features on admitting chest CT predicted hypoxia worsening during hospitalization and time to hospital discharge in COVID-19 patients.

摘要

背景

本研究旨在通过对急诊科就诊时进行的 CT 检查,量化 COVID-19 肺炎的特征,以预测患者住院期间的缺氧情况和预后。

方法

对 2020 年 3 月 1 日至 4 月 7 日期间因 COVID-19 肺炎在急诊科进行的胸部 CT 进行分析。使用基于 HU 阈值的软件对肺炎的三个特征(磨玻璃影、半实变和实变)和充气良好的肺百分比进行量化。ROC 曲线确定了 CT 参数的最佳截断值,以预测缺氧恶化和出院。采用多 Cox 比例风险回归分析 CT 定量特征、人口统计学和临床变量预测患者住院时间的能力。

结果

共纳入 77 例 COVID-19 肺炎患者(中位年龄 56 岁,51 名男性)。COVID-19 肺炎的定量特征与年龄、性别和症状出现时间无相关性,而合并症数量较多与充气良好的肺实质比例较低(rho=-0.234,p=0.04)和半实变比例增加(rho=-0.303,p=0.008)相关。充气良好的肺(≤57%)、半实变(≥17%)和实变(≥9%)预测住院期间最严重的低氧血症,曲线下面积(AUC)分别为 0.76、0.75 和 0.77。多 Cox 回归分析确定了年龄较小(p<0.01)、女性(p<0.001)、症状出现时间较长(p=0.049)、半实变程度较轻(p<0.01)和实变程度较轻(p=0.03)是住院时间较短的独立预测因素。

结论

急诊科就诊时胸部 CT 量化肺炎特征可预测 COVID-19 患者住院期间缺氧恶化和出院时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/8081746/2bc33d62f351/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验