Department of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea.
Sci Rep. 2021 May 13;11(1):10191. doi: 10.1038/s41598-021-89686-3.
Medical image segmentation of tissue abnormalities, key organs, or blood vascular system is of great significance for any computerized diagnostic system. However, automatic segmentation in medical image analysis is a challenging task since it requires sophisticated knowledge of the target organ anatomy. This paper develops an end-to-end deep learning segmentation method called Contextual Multi-Scale Multi-Level Network (CMM-Net). The main idea is to fuse the global contextual features of multiple spatial scales at every contracting convolutional network level in the U-Net. Also, we re-exploit the dilated convolution module that enables an expansion of the receptive field with different rates depending on the size of feature maps throughout the networks. In addition, an augmented testing scheme referred to as Inversion Recovery (IR) which uses logical "OR" and "AND" operators is developed. The proposed segmentation network is evaluated on three medical imaging datasets, namely ISIC 2017 for skin lesions segmentation from dermoscopy images, DRIVE for retinal blood vessels segmentation from fundus images, and BraTS 2018 for brain gliomas segmentation from MR scans. The experimental results showed superior state-of-the-art performance with overall dice similarity coefficients of 85.78%, 80.27%, and 88.96% on the segmentation of skin lesions, retinal blood vessels, and brain tumors, respectively. The proposed CMM-Net is inherently general and could be efficiently applied as a robust tool for various medical image segmentations.
医学图像中组织异常、关键器官或血管系统的分割对于任何计算机诊断系统都具有重要意义。然而,医学图像分析中的自动分割是一项具有挑战性的任务,因为它需要对目标器官解剖结构有深入的了解。本文提出了一种名为上下文多尺度多层次网络(CMM-Net)的端到端深度学习分割方法。其主要思想是在 U-Net 的每个收缩卷积网络层融合多个空间尺度的全局上下文特征。此外,我们重新利用了扩张卷积模块,该模块允许根据网络中特征图的大小以不同的速率扩展感受野。此外,还开发了一种称为反转恢复(IR)的增强测试方案,该方案使用逻辑“OR”和“AND”运算符。所提出的分割网络在三个医学成像数据集上进行了评估,即用于从皮肤镜图像中分割皮肤病变的 ISIC 2017 数据集、用于从眼底图像中分割视网膜血管的 DRIVE 数据集,以及用于从 MR 扫描中分割脑胶质瘤的 BraTS 2018 数据集。实验结果表明,在皮肤病变、视网膜血管和脑肿瘤的分割方面,整体骰子相似系数分别达到了 85.78%、80.27%和 88.96%,达到了最先进的水平。所提出的 CMM-Net 具有内在的通用性,可以有效地应用于各种医学图像分割中,成为一种强大的工具。