文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Ferrite Nanoparticles-Based Reactive Oxygen Species-Mediated Cancer Therapy.

作者信息

Yu Shancheng, Zhang Huan, Zhang Shiya, Zhong Mingli, Fan Haiming

机构信息

School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.

College of Chemistry and Materials Science, Northwest University, Xi'an, China.

出版信息

Front Chem. 2021 Apr 27;9:651053. doi: 10.3389/fchem.2021.651053. eCollection 2021.


DOI:10.3389/fchem.2021.651053
PMID:33987168
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8110829/
Abstract

Ferrite nanoparticles have been widely used in the biomedical field (such as magnetic targeting, magnetic resonance imaging, magnetic hyperthermia, etc.) due to their appealing magnetic properties. In tumor acidic microenvironment, ferrite nanoparticles show intrinsic peroxidase-like activities, which can catalyze the Fenton reaction of hydrogen peroxide ( ) to produce highly toxic hydroxyl free radicals (•), causing the death of tumor cell. Recent progresses in this field have shown that the enzymatic activity of ferrite can be improved converting external field energy such as alternating magnetic field and near-infrared laser into nanoscale heat to produce more •, enhancing the killing effect on tumor cells. On the other hand, combined with other nanomaterials or drugs for cascade reactions, the production of reactive oxygen species (ROS) can also be increased to obtain more efficient cancer therapy. In this review, we will discuss the current status and progress of the application of ferrite nanoparticles in ROS-mediated cancer therapy and try to provide new ideas for this area.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/f8fa9db17706/fchem-09-651053-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/b596b8708571/fchem-09-651053-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/d234730b5a75/fchem-09-651053-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/ee70cbd4bb63/fchem-09-651053-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/cbd76a731f77/fchem-09-651053-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/0edddd8ea5c8/fchem-09-651053-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/ea8aac3d4f50/fchem-09-651053-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/540784fc7f4f/fchem-09-651053-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/9046e63f8f4a/fchem-09-651053-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/5bb250eb2661/fchem-09-651053-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/ad48c3e19f97/fchem-09-651053-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/8a985d90c201/fchem-09-651053-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/712e683ded05/fchem-09-651053-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/cf885f601977/fchem-09-651053-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/f8fa9db17706/fchem-09-651053-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/b596b8708571/fchem-09-651053-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/d234730b5a75/fchem-09-651053-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/ee70cbd4bb63/fchem-09-651053-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/cbd76a731f77/fchem-09-651053-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/0edddd8ea5c8/fchem-09-651053-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/ea8aac3d4f50/fchem-09-651053-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/540784fc7f4f/fchem-09-651053-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/9046e63f8f4a/fchem-09-651053-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/5bb250eb2661/fchem-09-651053-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/ad48c3e19f97/fchem-09-651053-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/8a985d90c201/fchem-09-651053-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/712e683ded05/fchem-09-651053-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/cf885f601977/fchem-09-651053-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816b/8110829/f8fa9db17706/fchem-09-651053-g0013.jpg

相似文献

[1]
Ferrite Nanoparticles-Based Reactive Oxygen Species-Mediated Cancer Therapy.

Front Chem. 2021-4-27

[2]
Multifunctional Magnetic Copper Ferrite Nanoparticles as Fenton-like Reaction and Near-Infrared Photothermal Agents for Synergetic Antibacterial Therapy.

ACS Appl Mater Interfaces. 2019-8-21

[3]
Enhanced Tumor Synergistic Therapy by Injectable Magnetic Hydrogel Mediated Generation of Hyperthermia and Highly Toxic Reactive Oxygen Species.

ACS Nano. 2019-10-25

[4]
Ultrasmall CuS nanodots as photothermal-enhanced Fenton nanocatalysts for synergistic tumor therapy at NIR-II biowindow.

Biomaterials. 2019-3-16

[5]
Photonic/magnetic hyperthermia-synergistic nanocatalytic cancer therapy enabled by zero-valence iron nanocatalysts.

Biomaterials. 2019-7-19

[6]
Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells.

Toxicology. 2011-3-4

[7]
Synergistic Oxygen Generation and Reactive Oxygen Species Scavenging by Manganese Ferrite/Ceria Co-decorated Nanoparticles for Rheumatoid Arthritis Treatment.

ACS Nano. 2019-3-7

[8]
Ferrite bismuth-based nanomaterials: From ferroelectric and piezoelectric properties to nanomedicine applications.

Colloids Surf B Biointerfaces. 2024-1

[9]
Triggering Sequential Catalytic Fenton Reaction on 2D MXenes for Hyperthermia-Augmented Synergistic Nanocatalytic Cancer Therapy.

ACS Appl Mater Interfaces. 2019-11-6

[10]
All-in-One Theranostic Nanoagent with Enhanced Reactive Oxygen Species Generation and Modulating Tumor Microenvironment Ability for Effective Tumor Eradication.

ACS Nano. 2018-5-10

引用本文的文献

[1]
Harnessing the interaction between redox signaling and senescence to restrain tumor drug resistance.

Front Cell Dev Biol. 2025-7-9

[2]
A comprehensive review on the applications of ferrite nanoparticles in the diagnosis and treatment of breast cancer.

Med Oncol. 2024-1-10

[3]
Engineering metabolism to modulate immunity.

Adv Drug Deliv Rev. 2024-1

[4]
Iron Oxide Nanoparticles in Cancer Treatment: Cell Responses and the Potency to Improve Radiosensitivity.

Pharmaceutics. 2023-9-30

[5]
Construction of Genetically Encoded Biosensors to Monitor Subcellular Compartment-Specific Glutathione Response to Chemotherapeutic Drugs in Acute Myeloid Leukemia Cells.

Anal Chem. 2023-2-7

[6]
Glassy-like Metal Oxide Particles Embedded on Micrometer Thicker Alginate Films as Promising Wound Healing Nanomaterials.

Int J Mol Sci. 2022-5-17

[7]
Tumor microenvironment-responsive fenton nanocatalysts for intensified anticancer treatment.

J Nanobiotechnology. 2022-2-5

[8]
Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends.

Pharmaceutics. 2021-6-24

本文引用的文献

[1]
Fabrication of Anisotropic Cu Ferrite-Polymer Core-Shell Nanoparticles for Photodynamic Ablation of Cervical Cancer Cells.

Nanomaterials (Basel). 2020-12-4

[2]
The toxicity mechanism of different sized iron nanoparticles on human breast cancer (MCF7) cells.

Food Chem. 2021-3-30

[3]
Glioblastoma Therapy Using Codelivery of Cisplatin and Glutathione Peroxidase Targeting siRNA from Iron Oxide Nanoparticles.

ACS Appl Mater Interfaces. 2020-9-30

[4]
Iron Oxide Nanoparticles as Autophagy Intervention Agents Suppress Hepatoma Growth by Enhancing Tumoricidal Autophagy.

Adv Sci (Weinh). 2020-6-9

[5]
Specific Oxide Nanoclusters Enhance Intracellular Reactive Oxygen Species for Cancer-Targeted Therapy.

Langmuir. 2020-8-18

[6]
A Graphdiyne Oxide-Based Iron Sponge with Photothermally Enhanced Tumor-Specific Fenton Chemistry.

Adv Mater. 2020-8

[7]
Magnetic stomatocyte-like nanomotor as photosensitizer carrier for photodynamic therapy based cancer treatment.

Colloids Surf B Biointerfaces. 2020-10

[8]
Selective anticancer activity of superparamagnetic iron oxide nanoparticles (SPIONs) against oral tongue cancer using in vitro methods: The key role of oxidative stress on cancerous mitochondria.

J Biochem Mol Toxicol. 2020-10

[9]
Magnetic Temperature-Sensitive Solid-Lipid Particles for Targeting and Killing Tumor Cells.

Front Chem. 2020-4-9

[10]
Overcoming multidrug resistance through co-delivery of ROS-generating nano-machinery in cancer therapeutics.

J Mater Chem B. 2017-2-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索