Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands.
Nat Commun. 2021 May 14;12(1):2834. doi: 10.1038/s41467-021-23098-9.
The design of hydrogels where multiple interpenetrating networks enable enhanced mechanical properties can broaden their field of application in biomedical materials, 3D printing, and soft robotics. We report a class of self-reinforced homocomposite hydrogels (HHGs) comprised of interpenetrating networks of multiscale hierarchy. A molecular alginate gel is reinforced by a colloidal network of hierarchically branched alginate soft dendritic colloids (SDCs). The reinforcement of the molecular gel with the nanofibrillar SDC network of the same biopolymer results in a remarkable increase of the HHG's mechanical properties. The viscoelastic HHGs show >3× larger storage modulus and >4× larger Young's modulus than either constitutive network at the same concentration. Such synergistically enforced colloidal-molecular HHGs open up numerous opportunities for formulation of biocompatible gels with robust structure-property relationships. Balance of the ratio of their precursors facilitates precise control of the yield stress and rate of self-reinforcement, enabling efficient extrusion 3D printing of HHGs.
设计具有多重贯穿网络的水凝胶可以增强其机械性能,从而拓宽其在生物医学材料、3D 打印和软机器人领域的应用。我们报告了一类由多尺度层次结构的贯穿网络组成的自增强同型复合水凝胶(HHG)。分子海藻酸钠凝胶由分层支化海藻酸钠软树枝状胶体(SDC)的胶体网络增强。与同一种生物聚合物的纳米纤维 SDC 网络增强分子凝胶导致 HHG 的机械性能显著提高。粘弹性 HHG 的储能模量比任何组成网络在相同浓度下都大 3 倍以上,杨氏模量大 4 倍以上。这种协同增强的胶体-分子 HHG 为具有稳健结构-性能关系的生物相容性凝胶的配方提供了众多机会。其前体比例的平衡有利于精确控制屈服应力和自增强速率,从而能够有效地进行 HHG 的挤出 3D 打印。