Suppr超能文献

乙醇和正丁醇对支撑脂质双层流动性的影响。

Effects of ethanol and n-butanol on the fluidity of supported lipid bilayers.

机构信息

Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, MI, 48824, USA.

Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, MI, 48824, USA.

出版信息

Chem Phys Lipids. 2021 Aug;238:105091. doi: 10.1016/j.chemphyslip.2021.105091. Epub 2021 May 13.

Abstract

The interactions of molecules such as short-chain alcohols with the mammalian plasma membrane are thought to play a role in anesthetic effects. We have examined the concentration-dependent effects of ethanol and n-butanol on the fluidity of planar model lipid bilayer structures supported on mica. The supported model bilayer was composed of 1,2-dioleoyl-sn-phosphatidylcholine (DOPC), cholesterol, and sphingomyelin, and the bilayers were formed by vesicle fusion from extruded unilamellar vesicles (133 nm diameter, polydispersity index of 0.17). Controlled amounts of ethanol and n-butanol were added during vesicle deposition. Translational diffusion constants were obtained utilizing fluorescence recovery after photobleaching (FRAP) measurements on the micrometer scale with perylene as the fluorophore. The translational diffusion constants increased and then decreased with increasing ethanol concentration, with the bilayer structure degrading at ca. 0.8 M ethanol. A similar trend was observed for n-butanol at lower alcohol concentrations owing to greater interactions with phospholipid bilayer constituents. For n-butanol, the integrity of the planar bilayer structure deteriorated at ca. 0.4 M n-butanol. The results are consistent with bilayer interdigitation.

摘要

人们认为,短链醇等分子与哺乳动物质膜的相互作用在麻醉效果中起作用。我们研究了乙醇和正丁醇在云母支持的平面模型脂质双层结构上的浓度依赖性对其流动性的影响。该支撑的模型双层由 1,2-二油酰基-sn-磷脂酰胆碱 (DOPC)、胆固醇和神经鞘磷脂组成,双层由挤出的单层囊泡融合形成(直径 133nm,多分散指数为 0.17)。在囊泡沉积过程中加入了一定量的乙醇和正丁醇。利用苝作为荧光团,在微米尺度上通过光漂白后荧光恢复 (FRAP) 测量获得了平移扩散常数。随着乙醇浓度的增加,平移扩散常数先增加后减小,当乙醇浓度约为 0.8M 时,双层结构降解。由于与磷脂双层成分的相互作用更大,在较低的酒精浓度下,正丁醇也观察到类似的趋势。对于正丁醇,在约 0.4M 正丁醇时,平面双层结构的完整性恶化。结果与双层交错一致。

相似文献

1
Effects of ethanol and n-butanol on the fluidity of supported lipid bilayers.
Chem Phys Lipids. 2021 Aug;238:105091. doi: 10.1016/j.chemphyslip.2021.105091. Epub 2021 May 13.
2
Ceramide-mediation of diffusion in supported lipid bilayers.
Chem Phys Lipids. 2021 Aug;238:105090. doi: 10.1016/j.chemphyslip.2021.105090. Epub 2021 May 7.
3
Ethanol-induced perturbations to planar lipid bilayer structures.
J Phys Chem B. 2014 Jan 16;118(2):537-46. doi: 10.1021/jp410305m. Epub 2014 Jan 7.
4
Structural disruption of phospholipid bilayers over a range of length scales by n-butanol.
J Phys Chem B. 2014 Mar 20;118(11):3085-93. doi: 10.1021/jp500454z. Epub 2014 Mar 6.
5
Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts.
Biochim Biophys Acta. 2011 Jan;1808(1):405-14. doi: 10.1016/j.bbamem.2010.10.006. Epub 2010 Oct 15.
6
Effects of ethanol on the organization of phosphocholine lipid bilayers.
J Phys Chem B. 2010 Mar 25;114(11):3840-6. doi: 10.1021/jp910897t.
7
Fluid supported lipid bilayers containing monosialoganglioside GM1: a QCM-D and FRAP study.
Colloids Surf B Biointerfaces. 2006 Jun 1;50(1):76-84. doi: 10.1016/j.colsurfb.2006.03.010.
8
Macroscopic and Nanoscopic Heterogeneous Structures in a Three-Component Lipid Bilayer Mixtures Determined by Atomic Force Microscopy.
Langmuir. 2015 Nov 17;31(45):12417-25. doi: 10.1021/acs.langmuir.5b02863. Epub 2015 Nov 3.
9
Fluorescence microscopic characterization of ionic polymer bead-supported phospholipid bilayer membrane systems.
Colloids Surf B Biointerfaces. 2012 Dec 1;100:190-6. doi: 10.1016/j.colsurfb.2012.05.027. Epub 2012 Jun 1.
10
Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol. An NMR study of dynamics and lateral phase separation.
Chem Phys Lipids. 2006 Jun;141(1-2):179-84. doi: 10.1016/j.chemphyslip.2006.02.011. Epub 2006 Mar 20.

引用本文的文献

1
Bacterial Tolerance to 1-Butanol and 2-Butanol: Quantitative Assessment and Transcriptomic Response.
Int J Mol Sci. 2024 Dec 12;25(24):13336. doi: 10.3390/ijms252413336.
2
Osmotic Pressure and Its Biological Implications.
Int J Mol Sci. 2024 Mar 14;25(6):3310. doi: 10.3390/ijms25063310.
3
[Study on the effect of small alcohol on lipid hydration and liposome formation].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Feb 25;39(1):112-119. doi: 10.7507/1001-5515.202105060.

本文引用的文献

1
Artificial Lipid Membranes: Past, Present, and Future.
Membranes (Basel). 2017 Jul 26;7(3):38. doi: 10.3390/membranes7030038.
2
Clinical concentrations of chemically diverse general anesthetics minimally affect lipid bilayer properties.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):3109-3114. doi: 10.1073/pnas.1611717114. Epub 2017 Mar 6.
3
Using Diffusion To Characterize Interfacial Heterogeneity.
Langmuir. 2017 Feb 7;33(5):1155-1161. doi: 10.1021/acs.langmuir.6b04341. Epub 2017 Jan 24.
4
Structural disruption of phospholipid bilayers over a range of length scales by n-butanol.
J Phys Chem B. 2014 Mar 20;118(11):3085-93. doi: 10.1021/jp500454z. Epub 2014 Mar 6.
5
Ethanol-induced perturbations to planar lipid bilayer structures.
J Phys Chem B. 2014 Jan 16;118(2):537-46. doi: 10.1021/jp410305m. Epub 2014 Jan 7.
6
7
The protective profile of argon, helium, and xenon in a model of neonatal asphyxia in rats.
Crit Care Med. 2012 Jun;40(6):1724-30. doi: 10.1097/CCM.0b013e3182452164.
8
Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts.
Biochim Biophys Acta. 2011 Jan;1808(1):405-14. doi: 10.1016/j.bbamem.2010.10.006. Epub 2010 Oct 15.
9
Effects of ethanol on the organization of phosphocholine lipid bilayers.
J Phys Chem B. 2010 Mar 25;114(11):3840-6. doi: 10.1021/jp910897t.
10
Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging.
Chem Phys Lipids. 2009 Feb;157(2):61-77. doi: 10.1016/j.chemphyslip.2008.07.011. Epub 2008 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验