Suppr超能文献

通过对抗学习增强儿科CT中的生殖器官分割

Enhancing Reproductive Organ Segmentation in Pediatric CT via Adversarial Learning.

作者信息

Kan Chi Nok Enoch, Gilat-Schmidt Taly, Ye Dong Hye

机构信息

Department of Electrical and Computer Engineering, Marquette University, Milwaukee, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2021 Feb;11596. doi: 10.1117/12.2582127. Epub 2021 Feb 15.

Abstract

Accurately segmenting organs in abdominal computed tomography (CT) scans is crucial for clinical applications such as pre-operative planning and dose estimation. With the recent advent of deep learning algorithms, many robust frameworks have been proposed for organ segmentation in abdominal CT images. However, many of these frameworks require large amounts of training data in order to achieve high segmentation accuracy. Pediatric abdominal CT images containing reproductive organs are particularly hard to obtain since these organs are extremely sensitive to ionizing radiation. Hence, it is extremely challenging to train automatic segmentation algorithms on organs such as the uterus and the prostate. To address these issues, we propose a novel segmentation network with a built-in auxiliary classifier generative adversarial network (ACGAN) that conditionally generates additional features during training. The proposed CFG-SegNet (conditional feature generation segmentation network) is trained on a single loss function which combines adversarial loss, reconstruction loss, auxiliary classifier loss and segmentation loss. 2.5D segmentation experiments are performed on a custom data set containing 24 female CT volumes containing the uterus and 40 male CT volumes containing the prostate. CFG-SegNet achieves an average segmentation accuracy of 0.929 DSC (Dice Similarity Coefficient) on the prostate and 0.724 DSC on the uterus with 4-fold cross validation. The results show that our network is high-performing and has the potential to precisely segment difficult organs with few available training images.

摘要

在腹部计算机断层扫描(CT)图像中准确分割器官对于诸如术前规划和剂量估计等临床应用至关重要。随着深度学习算法的近期出现,已经提出了许多用于腹部CT图像中器官分割的强大框架。然而,这些框架中的许多都需要大量的训练数据才能实现高分割精度。包含生殖器官的儿科腹部CT图像特别难以获得,因为这些器官对电离辐射极其敏感。因此,在诸如子宫和前列腺等器官上训练自动分割算法极具挑战性。为了解决这些问题,我们提出了一种新颖的分割网络,其内置辅助分类器生成对抗网络(ACGAN),该网络在训练期间有条件地生成额外特征。所提出的CFG-SegNet(条件特征生成分割网络)在单个损失函数上进行训练,该损失函数结合了对抗损失、重建损失、辅助分类器损失和分割损失。在一个包含24个含子宫的女性CT容积和40个含前列腺的男性CT容积的自定义数据集上进行了2.5D分割实验。通过4折交叉验证,CFG-SegNet在前列腺上实现了平均分割精度为0.929 DSC(骰子相似系数),在子宫上为0.724 DSC。结果表明,我们的网络性能很高,并且有潜力在可用训练图像较少的情况下精确分割困难器官。

相似文献

2
Age Encoded Adversarial Learning for Pediatric CT Segmentation.用于儿科CT分割的年龄编码对抗学习
Bioengineering (Basel). 2024 Mar 27;11(4):319. doi: 10.3390/bioengineering11040319.

本文引用的文献

5
CE-Net: Context Encoder Network for 2D Medical Image Segmentation.CE-Net:用于二维医学图像分割的上下文编码器网络。
IEEE Trans Med Imaging. 2019 Oct;38(10):2281-2292. doi: 10.1109/TMI.2019.2903562. Epub 2019 Mar 7.
7
Clinical radiation pathology as applied to curative radiotherapy.
Cancer. 1968 Oct;22(4):767-78. doi: 10.1002/1097-0142(196810)22:4<767::aid-cncr2820220412>3.0.co;2-7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验