Suppr超能文献

基于枕骨结构传感器的工作:面向开发用于数字化脑电图电极位置的应用程序的基准地标自动检测

Automatic Detection of Fiducial Landmarks Toward the Development of an Application for Digitizing the Locations of EEG Electrodes: Occipital Structure Sensor-Based Work.

作者信息

Gallego Martínez Elieser E, González Mitjans Anisleidy, Garea-Llano Eduardo, Bringas-Vega Maria L, Valdes-Sosa Pedro A

机构信息

The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China.

Telecommunications and Electronic Department, University of Pinar del Río "Hermanos Saíz", Pinar del Río, Cuba.

出版信息

Front Neurosci. 2021 Apr 29;15:526257. doi: 10.3389/fnins.2021.526257. eCollection 2021.

Abstract

The reconstruction of electrophysiological sources within the brain is sensitive to the constructed head model, which depends on the positioning accuracy of anatomical landmarks known as fiducials. In this work, we propose an algorithm for the automatic detection of fiducial landmarks of EEG electrodes on the 3D human head model. Our proposal combines a dimensional reduction approach with a perspective projection from 3D to 2D object space; the eye and ear automatic detection in a 2D face image by two cascades of classifiers and geometric transformations to obtain 3D spatial coordinates of the landmarks and to generate the head coordinate system, This is accomplished by considering the characteristics of the scanner information. Capturing the 3D model of the head is done with Occipital Inc. ST01 structure sensor and the implementation of our algorithm was carried out on MATLAB R2018b using the Computer Vision Toolbox and the FieldTrip Toolbox. The experimental results were aimed at recursively exploring the efficacy of the facial feature detectors as a function of the projection angle; they show that robust results are obtained in terms of false acceptance rate. Our proposal is an initial step of an approach for the automatic digitization of electrode locations. The experimental results demonstrate that the proposed method detects anatomical facial landmarks automatically, accurately, and rapidly.

摘要

大脑内电生理源的重建对构建的头部模型很敏感,而头部模型取决于被称为基准点的解剖标志的定位精度。在这项工作中,我们提出了一种算法,用于自动检测三维人体头部模型上脑电图电极的基准标志。我们的方案将降维方法与从三维到二维物体空间的透视投影相结合;通过两级分类器在二维面部图像中自动检测眼睛和耳朵,并进行几何变换以获得标志的三维空间坐标并生成头部坐标系,这是通过考虑扫描仪信息的特征来实现的。使用枕骨公司的ST01结构传感器获取头部的三维模型,并使用计算机视觉工具箱和FieldTrip工具箱在MATLAB R2018b上实现我们的算法。实验结果旨在递归地探索面部特征检测器的有效性与投影角度的关系;结果表明,在误接受率方面获得了可靠的结果。我们的方案是电极位置自动数字化方法的第一步。实验结果表明,该方法能够自动、准确、快速地检测解剖面部标志。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bf1/8117222/940f09729864/fnins-15-526257-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验