Suppr超能文献

在工作场所环境中使用脉搏、语音、身体运动和皮电数据量化压力与幸福感的非侵入式传感技术:研究概念与设计

Unobtrusive Sensing Technology for Quantifying Stress and Well-Being Using Pulse, Speech, Body Motion, and Electrodermal Data in a Workplace Setting: Study Concept and Design.

作者信息

Izumi Keisuke, Minato Kazumichi, Shiga Kiko, Sugio Tatsuki, Hanashiro Sayaka, Cortright Kelley, Kudo Shun, Fujita Takanori, Sado Mitsuhiro, Maeno Takashi, Takebayashi Toru, Mimura Masaru, Kishimoto Taishiro

机构信息

Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.

National Hospital Organization Tokyo Medical Center, Tokyo, Japan.

出版信息

Front Psychiatry. 2021 Apr 28;12:611243. doi: 10.3389/fpsyt.2021.611243. eCollection 2021.

Abstract

Mental disorders are a leading cause of disability worldwide. Depression has a significant impact in the field of occupational health because it is particularly prevalent during working age. On the other hand, there are a growing number of studies on the relationship between "well-being" and employee productivity. To promote healthy and productive workplaces, this study aims to develop a technique to quantify stress and well-being in a way that does not disturb the workplace. This is a single-arm prospective observational study. The target population is adult (>20 years old) workers at companies that often engage in desk work; specifically, a person who sits in front of a computer for at least half their work hours. The following data will be collected: (a) participants' background characteristics; (b) participants' biological data during the 4-week observation period using sensing devices such as a camera built into the computer (pulse wave data extracted from the facial video images), a microphone built into their work computer (voice data), and a wristband-type wearable device (electrodermal activity data, body motion data, and body temperature); (c) stress, well-being, and depression rating scale assessment data. The analysis workflow is as follows: (1) primary analysis, comprised of using software to digitalize participants' vital information; (2) secondary analysis, comprised of examining the relationship between the quantified vital data from (1), stress, well-being, and depression; (3) tertiary analysis, comprised of generating machine learning algorithms to estimate stress, well-being, and degree of depression in relation to each set of vital data as well as multimodal vital data. This study will evaluate digital phenotype regarding stress and well-being of white-collar workers over a 4-week period using persistently obtainable biomarkers such as heart rate, acoustic characteristics, body motion, and electrodermal activity. Eventually, this study will lead to the development of a machine learning algorithm to determine people's optimal levels of stress and well-being. Collected data and study results will be disseminated widely through conference presentations, journal publications, and/or mass media. The summarized results of our overall analysis will be supplied to participants. UMIN000036814.

摘要

精神障碍是全球残疾的主要原因。抑郁症在职业健康领域有重大影响,因为它在工作年龄阶段尤为普遍。另一方面,关于“幸福感”与员工生产力之间关系的研究越来越多。为促进健康且高效的工作场所,本研究旨在开发一种在不干扰工作场所的情况下量化压力和幸福感的技术。这是一项单臂前瞻性观察研究。目标人群是经常从事案头工作的成年(>20岁)员工;具体而言,是那些在至少一半工作时间坐在电脑前的人。将收集以下数据:(a) 参与者的背景特征;(b) 在为期4周的观察期内,使用诸如电脑内置摄像头(从面部视频图像中提取的脉搏波数据)、工作电脑内置麦克风(语音数据)以及腕带式可穿戴设备(皮肤电活动数据、身体运动数据和体温)等传感设备收集的参与者生物数据;(c) 压力、幸福感和抑郁评定量表评估数据。分析工作流程如下:(1) 初步分析,包括使用软件将参与者的生命信息数字化;(2) 二次分析,包括检查(1)中量化的生命数据与压力、幸福感和抑郁之间的关系;(3) 三次分析,包括生成机器学习算法,以估计与每组生命数据以及多模态生命数据相关的压力、幸福感和抑郁程度。本研究将使用持续可获取的生物标志物,如心率、声学特征、身体运动和皮肤电活动,在4周时间内评估白领员工压力和幸福感的数字表型。最终,本研究将导致开发一种机器学习算法,以确定人们压力和幸福感的最佳水平。收集的数据和研究结果将通过会议报告、期刊发表和/或大众媒体广泛传播。我们总体分析的总结结果将提供给参与者。UMIN000036814。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9768/8113638/938057e43c3e/fpsyt-12-611243-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验