文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

研究3D打印的用于大骨缺损的解剖学设计支架的结构和材料组成的影响。

Investigating the Influence of Architecture and Material Composition of 3D Printed Anatomical Design Scaffolds for Large Bone Defects.

作者信息

Daskalakis Evangelos, Liu Fengyuan, Huang Boyang, Acar Anil A, Cooper Glen, Weightman Andrew, Blunn Gordon, Koç Bahattin, Bartolo Paulo

机构信息

School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, M13 9PL, United Kingdom.

Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, Istanbul, 34956, Turkey.

出版信息

Int J Bioprint. 2021 Feb 24;7(2):268. doi: 10.18063/ijb.v7i2.268. eCollection 2021.


DOI:10.18063/ijb.v7i2.268
PMID:33997431
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8114095/
Abstract

There is a significant unmet clinical need to prevent amputations due to large bone loss injuries. We are addressing this problem by developing a novel, cost-effective osseointegrated prosthetic solution based on the use of modular pieces, bone bricks, made with biocompatible and biodegradable materials that fit together in a Lego-like way to form the prosthesis. This paper investigates the anatomical designed bone bricks with different architectures, pore size gradients, and material compositions. Polymer and polymer-composite 3D printed bone bricks are extensively morphological, mechanical, and biological characterized. Composite bone bricks were produced by mixing polycaprolactone (PCL) with different levels of hydroxyapatite (HA) and β-tri-calcium phosphate (TCP). Results allowed to establish a correlation between bone bricks architecture and material composition and bone bricks performance. Reinforced bone bricks showed improved mechanical and biological results. Best mechanical properties were obtained with PCL/TCP bone bricks with 38 double zig-zag filaments and 14 spiral-like pattern filaments, while the best biological results were obtained with PCL/HA bone bricks based on 25 double zig-zag filaments and 14 spiral-like pattern filaments.

摘要

预防因大面积骨质流失损伤导致的截肢存在重大未满足的临床需求。我们正在通过开发一种新颖、具有成本效益的骨整合假体解决方案来解决这一问题,该解决方案基于使用模块化部件——骨砖,这些骨砖由生物相容性和可生物降解材料制成,以类似乐高积木的方式拼接在一起形成假体。本文研究了具有不同结构、孔径梯度和材料成分的按解剖学设计的骨砖。对聚合物和聚合物复合材料3D打印骨砖进行了广泛的形态学、力学和生物学表征。复合骨砖是通过将聚己内酯(PCL)与不同含量的羟基磷灰石(HA)和β-磷酸三钙(TCP)混合制成的。结果建立了骨砖结构与材料成分以及骨砖性能之间的相关性。增强型骨砖显示出更好的力学和生物学结果。具有38条双之字形细丝和14条螺旋状细丝图案的PCL/TCP骨砖获得了最佳力学性能,而基于25条双之字形细丝和14条螺旋状细丝图案的PCL/HA骨砖获得了最佳生物学结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca32/8114095/8eb6b0c86132/IJB-7-2-268-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca32/8114095/d6ddc9e9ca44/IJB-7-2-268-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca32/8114095/705d755b0b8f/IJB-7-2-268-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca32/8114095/0e88b80a782e/IJB-7-2-268-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca32/8114095/5f79117c863a/IJB-7-2-268-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca32/8114095/9329b7b694f4/IJB-7-2-268-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca32/8114095/8eb6b0c86132/IJB-7-2-268-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca32/8114095/d6ddc9e9ca44/IJB-7-2-268-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca32/8114095/705d755b0b8f/IJB-7-2-268-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca32/8114095/0e88b80a782e/IJB-7-2-268-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca32/8114095/5f79117c863a/IJB-7-2-268-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca32/8114095/9329b7b694f4/IJB-7-2-268-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca32/8114095/8eb6b0c86132/IJB-7-2-268-g010.jpg

相似文献

[1]
Investigating the Influence of Architecture and Material Composition of 3D Printed Anatomical Design Scaffolds for Large Bone Defects.

Int J Bioprint. 2021-2-24

[2]
Evaluation of Pore Size Graded Bone Scaffolds with Different Material Composition.

3D Print Addit Manuf. 2024-4-1

[3]
Accelerated Degradation of Poly-ε-caprolactone Composite Scaffolds for Large Bone Defects.

Polymers (Basel). 2023-1-28

[4]
Bone Bricks: The Effect of Architecture and Material Composition on the Mechanical and Biological Performance of Bone Scaffolds.

ACS Omega. 2022-2-22

[5]
Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-Calcium Phosphate.

Materials (Basel). 2018-1-14

[6]
In Vivo Investigation of Polymer-Ceramic PCL/HA and PCL/β-TCP 3D Composite Scaffolds and Electrical Stimulation for Bone Regeneration.

Polymers (Basel). 2021-12-25

[7]
Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration.

Mater Sci Eng C Mater Biol Appl. 2021-3

[8]
Comparative Efficacies of Collagen-Based 3D Printed PCL/PLGA/β-TCP Composite Block Bone Grafts and Biphasic Calcium Phosphate Bone Substitute for Bone Regeneration.

Materials (Basel). 2017-4-17

[9]
3D-printed polycaprolactone scaffold mixed with β-tricalcium phosphate as a bone regenerative material in rabbit calvarial defects.

J Biomed Mater Res B Appl Biomater. 2018-10-9

[10]
Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: influence of composition and porosity.

J Mater Res. 2018-7-27

引用本文的文献

[1]
Investigation of the Effects of 3D Printing Parameters on the Mechanical Properties of Bone Scaffolds: Experimental Study Integrated with Artificial Neural Networks.

Bioengineering (Basel). 2025-3-19

[2]
Evaluation of Pore Size Graded Bone Scaffolds with Different Material Composition.

3D Print Addit Manuf. 2024-4-1

[3]
Mechanical and Computational Fluid Dynamic Models for Magnesium-Based Implants.

Materials (Basel). 2024-2-8

[4]
3D-printed vascularized biofunctional scaffold for bone regeneration.

Int J Bioprint. 2023-3-8

[5]
Design and 3D Printing of Personalized Hybrid and Gradient Structures for Critical Size Bone Defects.

ACS Appl Bio Mater. 2023-5-15

[6]
Geometry-Based Computational Fluid Dynamic Model for Predicting the Biological Behavior of Bone Tissue Engineering Scaffolds.

J Funct Biomater. 2022-7-27

[7]
Bone Bricks: The Effect of Architecture and Material Composition on the Mechanical and Biological Performance of Bone Scaffolds.

ACS Omega. 2022-2-22

[8]
Novel 3D Bioglass Scaffolds for Bone Tissue Regeneration.

Polymers (Basel). 2022-1-22

本文引用的文献

[1]
Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-Calcium Phosphate.

Materials (Basel). 2018-1-14

[2]
Modified Masquelet technique using allogeneic umbilical cord-derived mesenchymal stem cells for infected non-union femoral shaft fracture with a 12 cm bone defect: A case report.

Int J Surg Case Rep. 2017

[3]
Treatment of atrophic femoral non-unions according to the diamond concept: Results of one- and two-step surgical procedure.

J Orthop. 2016-11-2

[4]
Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration.

Biomaterials. 2016-1-9

[5]
Reconstruction of septic diaphyseal bone defects with the induced membrane technique.

Injury. 2015-10

[6]
Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering.

Dent Mater. 2016-1

[7]
Treatment of Bone Loss With the Induced Membrane Technique: Techniques and Outcomes.

J Orthop Trauma. 2015-12

[8]
Megaprosthesis in post-traumatic and periprosthetic large bone defects: Issues to consider.

Injury. 2014-12

[9]
Bone regenerative medicine: classic options, novel strategies, and future directions.

J Orthop Surg Res. 2014-3-17

[10]
Distraction osteogenesis in the treatment of long bone defects of the lower limbs: effectiveness, complications and clinical results; a systematic review and meta-analysis.

Bone Joint J. 2013-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索