文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Bone Bricks: The Effect of Architecture and Material Composition on the Mechanical and Biological Performance of Bone Scaffolds.

作者信息

Daskalakis Evangelos, Huang Boyang, Vyas Cian, Acar Anil A, Liu Fengyuan, Fallah Ali, Cooper Glen, Weightman Andrew, Blunn Gordon, Koç Bahattin, Bartolo Paulo

机构信息

School of Mechanical, Aerospace and Civil Engineering, University of Manchester, ManchesterM13 9PL, U.K.

Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla 34956, Istanbul, Turkey.

出版信息

ACS Omega. 2022 Feb 22;7(9):7515-7530. doi: 10.1021/acsomega.1c05437. eCollection 2022 Mar 8.


DOI:10.1021/acsomega.1c05437
PMID:35284712
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8908495/
Abstract

Large bone loss injuries require high-performance scaffolds with an architecture and material composition resembling native bone. However, most bone scaffold studies focus on three-dimensional (3D) structures with simple rectangular or circular geometries and uniform pores, not able to recapitulate the geometric characteristics of the native tissue. This paper addresses this limitation by proposing novel anatomically designed scaffolds (bone bricks) with nonuniform pore dimensions (pore size gradients) designed based on new lay-dawn pattern strategies. The gradient design allows one to tailor the properties of the bricks and together with the incorporation of ceramic materials allows one to obtain structures with high mechanical properties (higher than reported in the literature for the same material composition) and improved biological characteristics.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/0ff8a00e4d07/ao1c05437_0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/e52f76a7c474/ao1c05437_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/b664b7c29f1b/ao1c05437_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/6869fcf354eb/ao1c05437_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/a3799de61883/ao1c05437_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/fffbe3fe406e/ao1c05437_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/b1581f81c95f/ao1c05437_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/8e390afbea98/ao1c05437_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/094afbff5d50/ao1c05437_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/296ba9c2759f/ao1c05437_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/e4faed01dba8/ao1c05437_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/0932a0a89247/ao1c05437_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/5c774751c725/ao1c05437_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/5bb46fb81aad/ao1c05437_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/383e41d49ef3/ao1c05437_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/2e1a79a5ad25/ao1c05437_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/71ca18f8c869/ao1c05437_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/3a6281424063/ao1c05437_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/5c1dacadbd49/ao1c05437_0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/0ff8a00e4d07/ao1c05437_0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/e52f76a7c474/ao1c05437_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/b664b7c29f1b/ao1c05437_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/6869fcf354eb/ao1c05437_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/a3799de61883/ao1c05437_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/fffbe3fe406e/ao1c05437_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/b1581f81c95f/ao1c05437_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/8e390afbea98/ao1c05437_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/094afbff5d50/ao1c05437_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/296ba9c2759f/ao1c05437_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/e4faed01dba8/ao1c05437_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/0932a0a89247/ao1c05437_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/5c774751c725/ao1c05437_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/5bb46fb81aad/ao1c05437_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/383e41d49ef3/ao1c05437_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/2e1a79a5ad25/ao1c05437_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/71ca18f8c869/ao1c05437_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/3a6281424063/ao1c05437_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/5c1dacadbd49/ao1c05437_0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe5/8908495/0ff8a00e4d07/ao1c05437_0020.jpg

相似文献

[1]
Bone Bricks: The Effect of Architecture and Material Composition on the Mechanical and Biological Performance of Bone Scaffolds.

ACS Omega. 2022-2-22

[2]
Investigating the Influence of Architecture and Material Composition of 3D Printed Anatomical Design Scaffolds for Large Bone Defects.

Int J Bioprint. 2021-2-24

[3]
Accelerated Degradation of Poly-ε-caprolactone Composite Scaffolds for Large Bone Defects.

Polymers (Basel). 2023-1-28

[4]
Geometry-Based Computational Fluid Dynamic Model for Predicting the Biological Behavior of Bone Tissue Engineering Scaffolds.

J Funct Biomater. 2022-7-27

[5]
Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.

Mater Sci Eng C Mater Biol Appl. 2017-5-4

[6]
Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.

Acta Biomater. 2016-10-15

[7]
Influence of internal pore architecture on biological and mechanical properties of three-dimensional fiber deposited scaffolds for bone regeneration.

J Biomed Mater Res A. 2016-4

[8]
Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.

Acta Biomater. 2019-6-25

[9]
Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production.

J Biomed Mater Res B Appl Biomater. 2021-3

[10]
Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency.

Acta Biomater. 2010-11-4

引用本文的文献

[1]
Shape Memory PLA/TPU Blend Using High-Speed Thermo-Kinetic Mixing.

ACS Omega. 2024-12-27

[2]
Evaluation of Pore Size Graded Bone Scaffolds with Different Material Composition.

3D Print Addit Manuf. 2024-4-1

[3]
Poly-ε-Caprolactone 3D-Printed Porous Scaffold in a Femoral Condyle Defect Model Induces Early Osteo-Regeneration.

Polymers (Basel). 2023-12-24

[4]
The effect of graphene and graphene oxide induced reactive oxygen species on polycaprolactone scaffolds for bone cancer applications.

Mater Today Bio. 2023-11-30

[5]
Design and 3D Printing of Personalized Hybrid and Gradient Structures for Critical Size Bone Defects.

ACS Appl Bio Mater. 2023-5-15

[6]
Biological Scaffolds Assembled with Magnetic Nanoparticles for Bone Tissue Engineering: A Review.

Materials (Basel). 2023-2-8

[7]
Accelerated Degradation of Poly-ε-caprolactone Composite Scaffolds for Large Bone Defects.

Polymers (Basel). 2023-1-28

[8]
Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices.

Sci Technol Adv Mater. 2023-1-4

[9]
Geometry-Based Computational Fluid Dynamic Model for Predicting the Biological Behavior of Bone Tissue Engineering Scaffolds.

J Funct Biomater. 2022-7-27

本文引用的文献

[1]
Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications.

Addit Manuf. 2021-3

[2]
Capitate shortening osteotomy with or without vascularized bone grafting for the treatment of early stages of Kienböck's disease.

Int Orthop. 2021-10

[3]
A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing.

Proc Natl Acad Sci U S A. 2021-7-13

[4]
Refracture after Ilizarov fixation of infected ununited tibial fractures-an analysis of eight hundred and twelve cases.

Int Orthop. 2021-8

[5]
Investigating the Influence of Architecture and Material Composition of 3D Printed Anatomical Design Scaffolds for Large Bone Defects.

Int J Bioprint. 2021-2-24

[6]
Investigations of Graphene and Nitrogen-Doped Graphene Enhanced Polycaprolactone 3D Scaffolds for Bone Tissue Engineering.

Nanomaterials (Basel). 2021-4-6

[7]
Alternative Use of the Ilizarov Apparatus Set in Case of Complications During Intramedullary Nail Removal: A Case Report.

JBJS Case Connect. 2021-4-20

[8]
Megaprosthesis Versus Allograft Prosthesis Composite for the Management of Massive Skeletal Defects: A Meta-Analysis of Comparative Studies.

Curr Rev Musculoskelet Med. 2021-6

[9]
Antibacterial biomaterials in bone tissue engineering.

J Mater Chem B. 2021-3-21

[10]
Radial shortening, bone grafting and vascular pedicle implantation versus radial shortening alone in Kienböck's disease.

J Hand Surg Eur Vol. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索