Suppr超能文献

用于生物医学设备和骨组织工程的3D打印PCL/β-TCP支架的系统表征:组成和孔隙率的影响

Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: influence of composition and porosity.

作者信息

Bruyas Arnaud, Lou Frank, Stahl Alexander M, Gardner Michael, Maloney William, Goodman Stuart, Yang Yunzhi Peter

机构信息

Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, 94305, Stanford CA.

Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, 94305, Stanford CA.

出版信息

J Mater Res. 2018 Jul 27;33(14):1948-1959. doi: 10.1557/jmr.2018.112.

Abstract

This work aims at providing guidance through systematic experimental characterization, for the design of 3D printed scaffolds for potential orthopaedic applications, focusing on fused deposition modeling (FDM) with a composite of clinically available polycaprolactone (PCL) and β-tricalcium phosphate (β-TCP). First, we studied the effect of the chemical composition (0% to 60% β-TCP/PCL) on the scaffold's properties. We showed that surface roughness and contact angle were respectively proportional and inversely proportional to the amount of β-TCP, and that degradation rate increased with the amount of ceramic. Biologically, the addition of β-TCP enhanced proliferation and osteogenic differentiation of C3H10. Secondly, we systematically investigated the effect of the composition and the porosity on the 3D printed scaffold mechanical properties. Both an increasing amount of β-TCP and a decreasing porosity augmented the apparent Young's modulus of the 3D printed scaffolds. Third, as a proof-of-concept, a novel multi-material biomimetic implant was designed and fabricated for potential disk replacement.

摘要

这项工作旨在通过系统的实验表征为潜在的骨科应用3D打印支架的设计提供指导,重点是采用临床可用的聚己内酯(PCL)和β-磷酸三钙(β-TCP)复合材料的熔融沉积建模(FDM)。首先,我们研究了化学成分(0%至60%β-TCP/PCL)对支架性能的影响。我们发现表面粗糙度与β-TCP的含量成正比,接触角与β-TCP的含量成反比,并且降解速率随陶瓷含量的增加而增加。从生物学角度来看,添加β-TCP可增强C3H10的增殖和成骨分化。其次,我们系统地研究了成分和孔隙率对3D打印支架力学性能的影响。β-TCP含量的增加和孔隙率的降低都会提高3D打印支架的表观杨氏模量。第三,作为概念验证,设计并制造了一种新型的多材料仿生植入物,用于潜在的椎间盘置换。

相似文献

3
3D printed polycaprolactone/β-tricalcium phosphate/carbon nanotube composite - Physical properties and biocompatibility.
Heliyon. 2024 Feb 20;10(5):e26071. doi: 10.1016/j.heliyon.2024.e26071. eCollection 2024 Mar 15.
5
Beta-tricalcium phosphate enhanced mechanical and biological properties of 3D-printed polyhydroxyalkanoates scaffold for bone tissue engineering.
Int J Biol Macromol. 2022 Jun 1;209(Pt A):1553-1561. doi: 10.1016/j.ijbiomac.2022.04.056. Epub 2022 Apr 18.
6
Composite PCL Scaffold With 70% β-TCP as Suitable Structure for Bone Replacement.
Int Dent J. 2024 Dec;74(6):1220-1232. doi: 10.1016/j.identj.2024.02.013. Epub 2024 Apr 13.
10
Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:326-335. doi: 10.1016/j.msec.2017.05.003. Epub 2017 May 4.

引用本文的文献

1
Research Progress and Challenges in 3D Printing of Bioceramics and Bioceramic Matrix Composites.
Biomimetics (Basel). 2025 Jul 1;10(7):428. doi: 10.3390/biomimetics10070428.
2
The Novel Osteopore® Wedge in Medial Opening Wedge High Tibial Osteotomy: A Technical Note.
Cureus. 2025 Jun 18;17(6):e86272. doi: 10.7759/cureus.86272. eCollection 2025 Jun.
4
Application and progress of 3D printed biomaterials in osteoporosis.
Front Bioeng Biotechnol. 2025 Feb 4;13:1541746. doi: 10.3389/fbioe.2025.1541746. eCollection 2025.
6
Personalized bioceramic grafts for craniomaxillofacial bone regeneration.
Int J Oral Sci. 2024 Oct 31;16(1):62. doi: 10.1038/s41368-024-00327-7.
9
Comparing ceramic Fischer-Koch-S and gyroid TPMS scaffolds for potential in bone tissue engineering.
Front Bioeng Biotechnol. 2024 Aug 13;12:1410837. doi: 10.3389/fbioe.2024.1410837. eCollection 2024.
10
Fabrication of 3D-Printed Scaffolds with Multiscale Porosity.
ACS Omega. 2024 Jun 28;9(27):29186-29204. doi: 10.1021/acsomega.3c09035. eCollection 2024 Jul 9.

本文引用的文献

1
Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration.
Mater Today (Kidlington). 2018 May;21(4):362-376. doi: 10.1016/j.mattod.2017.10.005. Epub 2017 Nov 4.
2
Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-Calcium Phosphate.
Materials (Basel). 2018 Jan 14;11(1):129. doi: 10.3390/ma11010129.
4
Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.
Tissue Eng Part B Rev. 2017 Oct;23(5):436-450. doi: 10.1089/ten.TEB.2016.0348. Epub 2017 Jan 10.
6
Motion-preserving technologies for degenerative lumbar spine: The past, present, and future horizons.
SAS J. 2011 Sep 1;5(3):75-89. doi: 10.1016/j.esas.2011.05.001. eCollection 2011.
7
Fused-filament 3D printing (3DP) for fabrication of tablets.
Int J Pharm. 2014 Dec 10;476(1-2):88-92. doi: 10.1016/j.ijpharm.2014.09.044. Epub 2014 Sep 30.
9
Scaffolds for bone healing: concepts, materials and evidence.
Injury. 2011 Jun;42(6):569-73. doi: 10.1016/j.injury.2011.03.033. Epub 2011 Apr 12.
10
Calcium phosphate-based osteoinductive materials.
Chem Rev. 2008 Nov;108(11):4742-53. doi: 10.1021/cr800427g.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验