Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey.
University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States.
ACS Appl Bio Mater. 2023 May 15;6(5):1873-1885. doi: 10.1021/acsabm.3c00107. Epub 2023 Apr 18.
Treating critical-size bone defects with autografts, allografts, or standardized implants is challenging since the healing of the defect area necessitates patient-specific grafts with mechanically and physiologically relevant structures. Three-dimensional (3D) printing using computer-aided design (CAD) is a promising approach for bone tissue engineering applications by producing constructs with customized designs and biomechanical compositions. In this study, we propose 3D printing of personalized and implantable hybrid active scaffolds with a unique architecture and biomaterial composition for critical-size bone defects. The proposed 3D hybrid construct was designed to have a gradient cell-laden poly(ethylene glycol) (PEG) hydrogel, which was surrounded by a porous polycaprolactone (PCL) cage structure to recapitulate the anatomical structure of the defective area. The optimized PCL cage design not only provides improved mechanical properties but also allows the diffusion of nutrients and medium through the scaffold. Three different designs including zigzag, zigzag/spiral, and zigzag/spiral with shifting the zigzag layers were evaluated to find an optimal architecture from a mechanical point of view and permeability that can provide the necessary mechanical strength and oxygen/nutrient diffusion, respectively. Mechanical properties were investigated experimentally and analytically using finite element analysis (FEA), and computational fluid dynamics (CFD) simulation was used to determine the permeability of the structures. A hybrid scaffold was fabricated via 3D printing of the PCL cage structure and a PEG-based bioink comprising a varying number of human bone marrow mesenchymal stem cells (hBMSCs). The gradient bioink was deposited inside the PCL cage through a microcapillary extrusion to generate a mineralized gradient structure. The zigzag/spiral design for the PCL cage was found to be mechanically strong with sufficient and optimum nutrient/gas axial and radial diffusion while the PEG-based hydrogel provided a biocompatible environment for hBMSC viability, differentiation, and mineralization. This study promises the production of personalized constructs for critical-size bone defects by printing different biomaterials and gradient cells with a hybrid design depending on the need for a donor site for implantation.
用自体移植物、同种异体移植物或标准化植入物治疗临界尺寸骨缺损具有挑战性,因为缺损区域的愈合需要具有机械和生理相关结构的患者特异性移植物。使用计算机辅助设计 (CAD) 的三维 (3D) 打印是一种有前途的骨组织工程应用方法,可通过生成具有定制设计和生物力学组成的构建体来实现。在这项研究中,我们提出了使用独特的架构和生物材料组成的个性化和可植入混合活性支架的 3D 打印,用于临界尺寸骨缺损。所提出的 3D 混合结构旨在具有梯度细胞负载的聚乙二醇 (PEG) 水凝胶,其被多孔聚己内酯 (PCL) 笼结构包围,以再现缺损区域的解剖结构。优化的 PCL 笼设计不仅提供了改进的机械性能,而且还允许通过支架扩散营养物质和培养基。评估了三种不同的设计,包括之字形、之字形/螺旋形和之字形/螺旋形,带有交错的之字形层,以从机械角度和渗透性的角度找到最佳的结构,从而分别提供必要的机械强度和氧气/营养物质扩散。使用有限元分析 (FEA) 进行了实验和分析研究机械性能,并使用计算流体动力学 (CFD) 模拟来确定结构的渗透性。通过 3D 打印 PCL 笼结构和包含不同数量人骨髓间充质干细胞 (hBMSC) 的基于 PEG 的生物墨水来制造混合支架。通过微毛细管挤压将梯度生物墨水沉积在 PCL 笼内,以生成矿化梯度结构。发现 PCL 笼的之字形/螺旋形设计具有足够的机械强度和最佳的轴向和径向营养/气体扩散,而基于 PEG 的水凝胶为 hBMSC 的活力、分化和矿化提供了生物相容的环境。这项研究有望通过打印具有混合设计的不同生物材料和梯度细胞来生产个性化的临界尺寸骨缺损构建体,具体取决于植入物的供体部位的需求。