Suppr超能文献

壳聚糖-赖氨酸表面活性剂的生物活性功能纳米层,具有单一和混合蛋白排斥及抗生物膜特性,用于医疗植入物。

Bioactive Functional Nanolayers of Chitosan-Lysine Surfactant with Single- and Mixed-Protein-Repellent and Antibiofilm Properties for Medical Implants.

机构信息

Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, Laboratory for Characterization and Processing of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.

Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.

出版信息

ACS Appl Mater Interfaces. 2021 May 26;13(20):23352-23368. doi: 10.1021/acsami.1c01993. Epub 2021 May 17.

Abstract

Medical implant-associated infections resulting from biofilm formation triggered by unspecific protein adsorption are the prevailing cause of implant failure. However, implant surfaces rendered with multifunctional bioactive nanocoatings offer a promising alternative to prevent the initial attachment of bacteria and effectively interrupt biofilm formation. The need to research and develop novel and stable bioactive nanocoatings for medical implants and a comprehensive understanding of their properties in contact with the complex biological environment are crucial. In this study, we developed an aqueous stable and crosslinker-free polyelectrolyte-surfactant complex (PESC) composed of a renewable cationic polysaccharide, chitosan, a lysine-based anionic surfactant (77KS), and an amphoteric antibiotic, amoxicillin, which is widely used to treat a number of infections caused by bacteria. We successfully introduced the PESC as bioactive functional nanolayers on the "model" and "real" polydimethylsiloxane (PDMS) surfaces under dynamic and ambient conditions. Besides their high stability and improved wettability, these uniformly deposited nanolayers (thickness: 44-61 nm) with mixed charges exhibited strong repulsion toward three model blood proteins (serum albumin, fibrinogen, and γ-globulin) and their competitive interactions in the mixture in real-time, as demonstrated using a quartz crystal microbalance with dissipation (QCM-D). The functional nanolayers with a maximum negative zeta potential (ζ: -19 to -30 mV at pH 7.4), water content (1628-1810 ng cm), and hydration (low viscosity and elastic shear modulus) correlated with the mass, conformation, and interaction nature of proteins. In vitro antimicrobial activity testing under dynamic conditions showed that the charged nanolayers actively inhibited the growth of both Gram-negative () and Gram-positive () bacteria compared to unmodified PDMS. Given the ease of fabrication of multifunctional and charged biobased coatings with simultaneous protein-repellent and antimicrobial activities, the limitations of individual approaches could be overcome leading to a better and advanced design of various medical devices (e.g., catheters, prosthetics, and stents).

摘要

由非特异性蛋白质吸附引发生物膜形成而导致的与医疗植入物相关的感染,是导致植入物失效的主要原因。然而,经过多功能生物活性纳米涂层处理的植入物表面,为防止细菌初始附着并有效阻断生物膜形成提供了一种很有前景的替代方法。因此,研究和开发用于医疗植入物的新型稳定的生物活性纳米涂层,并全面了解其在与复杂生物环境接触时的特性,是至关重要的。在本研究中,我们开发了一种由可再生阳离子多糖壳聚糖、基于赖氨酸的阴离子表面活性剂(77KS)和两性抗生素阿莫西林组成的水稳定且不含交联剂的聚电解质-表面活性剂复合物(PESC)。阿莫西林广泛用于治疗多种由细菌引起的感染。我们成功地在动态和环境条件下,将 PESC 作为生物活性功能纳米层引入“模型”和“真实”聚二甲基硅氧烷(PDMS)表面。除了具有高稳定性和改善的润湿性外,这些带混合电荷的均匀沉积纳米层(厚度:44-61nm)对三种模型血液蛋白(血清白蛋白、纤维蛋白原和 γ-球蛋白)及其混合物中的竞争相互作用具有强烈的排斥作用,这可以通过石英晶体微天平耗散(QCM-D)实时证明。具有最大负 zeta 电位(ζ:-19 至-30mV,在 pH7.4 时)、水含量(1628-1810ngcm)和水合作用(低粘度和弹性剪切模量)的功能纳米层与蛋白质的质量、构象和相互作用性质相关。在动态条件下的体外抗菌活性测试表明,与未改性 PDMS 相比,带电荷的纳米层可积极抑制革兰氏阴性菌和革兰氏阳性菌的生长。鉴于多功能和带电荷的生物基涂层的易于制造,同时具有抗蛋白质和抗菌活性,可克服单一方法的局限性,从而可以更好和更先进地设计各种医疗设备(例如,导管、假体和支架)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7be4/8289181/c49b677575ae/am1c01993_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验