Suppr超能文献

原始超级增强子:酵母中热休克诱导的染色质组织。

Primordial super-enhancers: heat shock-induced chromatin organization in yeast.

机构信息

Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.

Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.

出版信息

Trends Cell Biol. 2021 Oct;31(10):801-813. doi: 10.1016/j.tcb.2021.04.004. Epub 2021 May 14.

Abstract

Specialized mechanisms ensure proper expression of critically important genes such as those specifying cell identity or conferring protection from environmental stress. Investigations of the heat shock response have been critical in elucidating basic concepts of transcriptional control. Recent studies demonstrate that in response to thermal stress, heat shock-responsive genes associate with high levels of transcriptional activators and coactivators and those in yeast intensely interact across and between chromosomes, coalescing into condensates. In mammalian cells, cell identity genes that are regulated by super-enhancers (SEs) are also densely occupied by transcriptional machinery that form phase-separated condensates. We suggest that the stress-remodeled yeast nucleome bears functional and structural resemblance to mammalian SEs, and will reveal fundamental mechanisms of gene control by transcriptional condensates.

摘要

专门的机制确保了关键重要基因的正确表达,例如那些指定细胞身份或赋予其免受环境压力保护的基因。对热休克反应的研究对于阐明转录控制的基本概念至关重要。最近的研究表明,在应对热应激时,热休克反应基因与高水平的转录激活剂和共激活剂结合,在酵母中,它们在染色体之间和染色体内部强烈相互作用,聚集成凝聚体。在哺乳动物细胞中,受超级增强子(SEs)调控的细胞身份基因也被转录机制密集占据,这些转录机制形成相分离的凝聚体。我们认为,经过应激重塑的酵母核小体在功能和结构上与哺乳动物的 SEs 相似,并将揭示转录凝聚体控制基因的基本机制。

相似文献

1
Primordial super-enhancers: heat shock-induced chromatin organization in yeast.
Trends Cell Biol. 2021 Oct;31(10):801-813. doi: 10.1016/j.tcb.2021.04.004. Epub 2021 May 14.
2
Inducible transcriptional condensates drive 3D genome reorganization in the heat shock response.
Mol Cell. 2022 Nov 17;82(22):4386-4399.e7. doi: 10.1016/j.molcel.2022.10.013. Epub 2022 Nov 2.
4
6
Super-Enhancers, Phase-Separated Condensates, and 3D Genome Organization in Cancer.
Cancers (Basel). 2022 Jun 10;14(12):2866. doi: 10.3390/cancers14122866.
9
Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome.
Mol Biol Cell. 2018 Dec 15;29(26):3168-3182. doi: 10.1091/mbc.E18-06-0353. Epub 2018 Oct 17.

引用本文的文献

2
Emergent 3D genome reorganization from the stepwise assembly of transcriptional condensates.
bioRxiv. 2025 Feb 27:2025.02.23.639564. doi: 10.1101/2025.02.23.639564.
3
Epigenetics in evolution and adaptation to environmental challenges: pathways for disease prevention and treatment.
Epigenomics. 2025 Apr;17(5):317-333. doi: 10.1080/17501911.2025.2464529. Epub 2025 Feb 13.
4
Nuclear basket proteins Mlp1 and Nup2 drive heat shock-induced 3D genome restructuring.
bioRxiv. 2025 Jan 2:2025.01.01.631024. doi: 10.1101/2025.01.01.631024.
5
Elucidation and engineering mitochondrial respiratory-related genes for improving bioethanol production at high temperature in .
Eng Microbiol. 2023 Sep 9;4(2):100108. doi: 10.1016/j.engmic.2023.100108. eCollection 2024 Jun.
6
Feedback control of the heat shock response by spatiotemporal regulation of Hsp70.
J Cell Biol. 2024 Dec 2;223(12). doi: 10.1083/jcb.202401082. Epub 2024 Sep 20.
7
The Heat Shock Response as a Condensate Cascade.
J Mol Biol. 2024 Jul 15;436(14):168642. doi: 10.1016/j.jmb.2024.168642. Epub 2024 Jun 5.
8
Effects of super-enhancers in cancer metastasis: mechanisms and therapeutic targets.
Mol Cancer. 2024 Jun 7;23(1):122. doi: 10.1186/s12943-024-02033-8.
9
Super-Enhancers and Their Parts: From Prediction Efforts to Pathognomonic Status.
Int J Mol Sci. 2024 Mar 7;25(6):3103. doi: 10.3390/ijms25063103.
10
High Glucose Is a Stimulation Signal of the Salt-Tolerant Yeast on Thermoadaptive Growth.
J Fungi (Basel). 2024 Feb 28;10(3):185. doi: 10.3390/jof10030185.

本文引用的文献

1
RNA promotes the formation of spatial compartments in the nucleus.
Cell. 2021 Nov 11;184(23):5775-5790.e30. doi: 10.1016/j.cell.2021.10.014. Epub 2021 Nov 4.
2
RNA-Mediated Feedback Control of Transcriptional Condensates.
Cell. 2021 Jan 7;184(1):207-225.e24. doi: 10.1016/j.cell.2020.11.030. Epub 2020 Dec 16.
3
Regulation of Hsf1 and the Heat Shock Response.
Adv Exp Med Biol. 2020;1243:41-50. doi: 10.1007/978-3-030-40204-4_3.
4
HSF1 phase transition mediates stress adaptation and cell fate decisions.
Nat Cell Biol. 2020 Feb;22(2):151-158. doi: 10.1038/s41556-019-0458-3. Epub 2020 Feb 3.
5
The pericentromeric protein shugoshin 2 cooperates with HSF1 in heat shock response and RNA Pol II recruitment.
EMBO J. 2019 Dec 16;38(24):e102566. doi: 10.15252/embj.2019102566. Epub 2019 Oct 28.
6
Chromatin conformation remains stable upon extensive transcriptional changes driven by heat shock.
Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19431-19439. doi: 10.1073/pnas.1901244116. Epub 2019 Sep 10.
7
Olfactory receptor genes make the case for inter-chromosomal interactions.
Curr Opin Genet Dev. 2019 Apr;55:106-113. doi: 10.1016/j.gde.2019.07.004. Epub 2019 Sep 3.
8
Chromosome conformation capture that detects novel cis- and trans-interactions in budding yeast.
Methods. 2020 Jan 1;170:4-16. doi: 10.1016/j.ymeth.2019.06.023. Epub 2019 Jun 25.
10
Condensin II Counteracts Cohesin and RNA Polymerase II in the Establishment of 3D Chromatin Organization.
Cell Rep. 2019 Mar 12;26(11):2890-2903.e3. doi: 10.1016/j.celrep.2019.01.116.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验