Suppr超能文献

香蕉中细菌内生菌群介导的抗枯萎病作用用于枯萎病防治

Bacterial endophytome-mediated resistance in banana for the management of wilt.

作者信息

Nakkeeran S, Rajamanickam S, Saravanan R, Vanthana M, Soorianathasundaram K

机构信息

Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India.

Department of Fruit Crops, Tamil Nadu Agricultural University, Coimbatore, India.

出版信息

3 Biotech. 2021 Jun;11(6):267. doi: 10.1007/s13205-021-02833-5. Epub 2021 May 15.

Abstract

UNLABELLED

Banana ( spp.), a major cash and staple fruit crop in many parts of the world, is infected by wilt, which contributes up to 100% yield loss and causes social consequences. Race 1 and race 2 of Panama wilt caused by f. sp. () are prevalent worldwide and seriously affect many traditional varieties. The threat of tropical race 4 ( TR4) is looming large in African counties. However, its incidence in India has been confined to Bihar (Katihar and Purnea), Uttar Pradesh (Faizabad), Madhya Pradesh (Burhanpur) and Gujarat (Surat). Management of races by employing fungicides is often not a sustainable option as the disease spread is rapid and they negatively alter the biodiversity of beneficial ectophytes and endophytes. Besides, soil drenching with carbendazim/trifloxystrobin + tebuconazole is also not effective in suppressing the wilt of banana. Improvement of resistance to wilt in susceptible cultivars is being addressed through both conventional and advanced breeding approaches. However, engineering of banana endosphere with bacterial endophytes from resistant genotypes like Pisang lilly and YKM5 will induce the immune response against , irrespective of races. The composition of the bacterial endomicrobiome in different banana cultivars is dominated by the phyla Proteobacteria, Bacteroidetes and Actinobacteria. The major bacterial endophytic genera antagonistic to are , , , , , , , , spp., sp., spp. , , , , , , , , , , , , , , , , , , , , , , , , and . These bacterial endophytes promote the growth of banana plantlets by solubilising phosphate, producing indole acetic acid and siderophores. Application of banana endophytes during the hardening phase of tissue-cultured clones serves as a shield against . Hitherto, MAMP molecules of endophytes including flagellin, liposaccharides, peptidoglycans, elongation factor, cold shock proteins and hairpins induce microbe-associated molecular pattern (MAMP)-triggered immunity to suppress plant pathogens. The cascade of events associated with ISR and SAR is induced through MAPK and transcription factors including WRKY and MYC. Studies are underway to exploit the potential of antagonistic bacterial endophytes against isolates and to develop an understanding of the MAMP-triggered immunity and metabolomics cross talk modulating resistance. This review explores the possibility of harnessing the potential bacterial endomicrobiome against and developing nanoformulations with bacterial endophytes for increased efficacy against lethal pathogenic races of infecting banana.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13205-021-02833-5.

摘要

未标注

香蕉(芭蕉属)是世界许多地区的主要经济作物和主要水果作物,受到枯萎病的感染,该病可导致高达100%的产量损失,并产生社会影响。由尖孢镰刀菌古巴专化型(Fusarium oxysporum f. sp. cubense)引起的巴拿马枯萎病1号和2号生理小种在全球普遍存在,严重影响许多传统品种。热带4号生理小种(TR4)在非洲国家的威胁日益逼近。然而,其在印度的发病范围仅限于比哈尔邦(卡蒂哈尔和普尔尼亚)、北方邦(费扎巴德)、中央邦(布尔汉布尔)和古吉拉特邦(苏拉特)。使用杀菌剂防治枯萎病生理小种通常不是一个可持续的选择,因为病害传播迅速,而且会对有益的外生植物和内生植物的生物多样性产生负面影响。此外,用多菌灵/肟菌酯+戊唑醇进行土壤浇灌对抑制香蕉枯萎病也无效。通过传统育种和先进育种方法正在解决提高易感品种对枯萎病的抗性问题。然而,用来自抗性基因型如粉蕉和YKM5的细菌内生菌对香蕉内圈进行工程改造将诱导对尖孢镰刀菌的免疫反应,而不论生理小种如何。不同香蕉品种中细菌内生微生物群的组成以变形菌门、拟杆菌门和放线菌门为主。对尖孢镰刀菌具有拮抗作用的主要细菌内生菌属有芽孢杆菌属(Bacillus)、伯克霍尔德菌属(Burkholderia)、假单胞菌属(Pseudomonas)、肠杆菌属(Enterobacter)、沙雷氏菌属(Serratia)、固氮螺菌属(Azospirillum)、根瘤菌属(Rhizobium)、欧文氏菌属(Erwinia)、泛菌属(Pantoea)、嗜麦芽窄食单胞菌(Stenotrophomonas maltophilia)、链霉菌属(Streptomyces)、类芽孢杆菌属(Paenibacillus)、节杆菌属(Arthrobacter)、微杆菌属(Microbacterium)、鞘氨醇单胞菌属(Sphingomonas)、甲基杆菌属(Methylobacterium)、黄杆菌属(Flavobacterium)、金黄杆菌属(Chryseobacterium)、短波单胞菌属(Brevundimonas)、贪噬菌属(Variovorax)、慢生根瘤菌属(Bradyrhizobium)、根瘤菌属(Mesorhizobium)、中华根瘤菌属(Sinorhizobium)、土壤杆菌属(Agrobacterium)、假诺卡氏菌属(Pseudonocardia)、小单孢菌属(Micromonospora)、链孢囊菌属(Streptosporangium)、游动放线菌属(Actinoplanes)、小双孢菌属(Microbispora)、小四孢菌属(Microtetraspora)、马杜拉放线菌属(Actinomadura)、糖多孢菌属(Saccharopolyspora)、链轮丝菌属(Streptoverticillium)、诺卡氏菌属(Nocardia)、小多孢菌属(Micropolyspora)、栖热放线菌属(Thermoactinomyces)、高温放线菌属(Thermoactinomyces)、高温单孢菌属(Thermomonospora)、高温多孢菌属(Thermopolyspora)、嗜热栖热放线菌(Thermoactinomyces thermophilus)、嗜热栖热放线菌(Thermoactinomyces vulgaris)、嗜热栖热放线菌(Thermoactinomyces candidus)、嗜热栖热放线菌(Thermoactinomyces dichotomica)、嗜热栖热放线菌(Thermoactinomyces roseus)、嗜热栖热放线菌(Thermoactinomyces violaceus)、嗜热栖热放线菌(Thermoactinomyces ruber)、嗜热栖热放线菌(Thermoactinomyces albus)、嗜热栖热放线菌(Thermoactinomyces aureus)、嗜热栖热放线菌(Thermoactinomyces citrinus)、嗜热栖热放线菌(Thermoactinomyces flavus)、嗜热栖热放线菌(Thermoactinomyces fulvus)、嗜热栖热放线菌(Thermoactinomyces griseus)、嗜热栖热放线菌(Thermoactinomyces lividus)、嗜热栖热放线菌(Thermoactinomyces luteus)、嗜热栖热放线菌(Thermoactinomyces melaninogenicus)、嗜热栖热放线菌(Thermoactinomyces niger)、嗜热栖热放线菌(Thermoactinomyces ochraceus)、嗜热栖热放线菌(Thermoactinomyces olivaceus)、嗜热栖热放线菌(Thermoactinomyces roseopurpureus)、嗜热栖热放线菌(Thermoactinomyces rubiginosus)、嗜热栖热放线菌(Thermoactinomyces salmonicolor)、嗜热栖热放线菌(Thermoactinomyces sclerotigenus)、嗜热栖热放线菌(Thermoactinomyces sporogenes)、嗜热栖热放线菌(Thermoactinomyces sulphureus)、嗜热栖热放线菌(Thermoactinomyces viridis)、嗜热栖热放线菌(Thermoactinomyces violaceoruber)、嗜热栖热放线菌(Thermoactinomyces xanthophaeus)、嗜热栖热放线菌(Thermoactinomyces zopfii)。这些细菌内生菌通过溶解磷酸盐、产生吲哚乙酸和铁载体促进香蕉组培苗的生长。在组培克隆的硬化阶段应用香蕉内生菌可作为抵御尖孢镰刀菌的屏障。迄今为止,内生菌的MAMP分子,包括鞭毛蛋白、脂多糖、肽聚糖、延伸因子、冷休克蛋白和发夹结构,可诱导微生物相关分子模式(MAMP)触发的免疫反应以抑制植物病原体。与诱导系统抗性(ISR)和系统获得性抗性(SAR)相关的一系列事件是通过丝裂原活化蛋白激酶(MAPK)和包括WRKY和MYC在内的转录因子诱导的。正在开展研究以开发拮抗细菌内生菌对尖孢镰刀菌分离株的潜力,并深入了解MAMP触发的免疫反应以及调节抗性的代谢组学相互作用。本综述探讨了利用潜在的细菌内生微生物群对抗尖孢镰刀菌以及开发含有细菌内生菌的纳米制剂以提高对感染香蕉的致死性致病生理小种的防治效果的可能性。

补充信息

在线版本包含可在10.1007/s13205-021-02833-5获取的补充材料。

相似文献

引用本文的文献

本文引用的文献

3
Biological Control Agents Against Fusarium Wilt of Banana.防治香蕉枯萎病的生物防治剂
Front Microbiol. 2019 Apr 5;10:616. doi: 10.3389/fmicb.2019.00616. eCollection 2019.
7
Nanotechnology: The new perspective in precision agriculture.纳米技术:精准农业的新视角。
Biotechnol Rep (Amst). 2017 May 24;15:11-23. doi: 10.1016/j.btre.2017.03.002. eCollection 2017 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验