Suppr超能文献

利用深度学习进行动态心脏 PET 的帧间自动患者运动校正。

Automatic Inter-Frame Patient Motion Correction for Dynamic Cardiac PET Using Deep Learning.

出版信息

IEEE Trans Med Imaging. 2021 Dec;40(12):3293-3304. doi: 10.1109/TMI.2021.3082578. Epub 2021 Nov 30.

Abstract

Patient motion during dynamic PET imaging can induce errors in myocardial blood flow (MBF) estimation. Motion correction for dynamic cardiac PET is challenging because the rapid tracer kinetics of 82Rb leads to substantial tracer distribution change across different dynamic frames over time, which can cause difficulties for image registration-based motion correction, particularly for early dynamic frames. In this paper, we developed an automatic deep learning-based motion correction (DeepMC) method for dynamic cardiac PET. In this study we focused on the detection and correction of inter-frame rigid translational motion caused by voluntary body movement and pattern change of respiratory motion. A bidirectional-3D LSTM network was developed to fully utilize both local and nonlocal temporal information in the 4D dynamic image data for motion detection. The network was trained and evaluated over motion-free patient scans with simulated motion so that the motion ground-truths are available, where one million samples based on 65 patient scans were used in training, and 600 samples based on 20 patient scans were used in evaluation. The proposed method was also evaluated using additional 10 patient datasets with real motion. We demonstrated that the proposed DeepMC obtained superior performance compared to conventional registration-based methods and other convolutional neural networks (CNN), in terms of motion estimation and MBF quantification accuracy. Once trained, DeepMC is much faster than the registration-based methods and can be easily integrated into the clinical workflow. In the future work, additional investigation is needed to evaluate this approach in a clinical context with realistic patient motion.

摘要

患者在动态 PET 成像过程中的运动可能会导致心肌血流 (MBF) 估计出现误差。由于 82Rb 的示踪剂动力学迅速,随着时间的推移,不同动态帧之间的示踪剂分布会发生显著变化,这会给基于图像配准的运动校正带来困难,尤其是对于早期的动态帧。本文提出了一种基于深度学习的自动运动校正 (DeepMC) 方法,用于动态心脏 PET。在这项研究中,我们专注于检测和校正由于自愿身体运动和呼吸运动模式变化引起的帧间刚性平移运动。开发了一个双向 3D LSTM 网络,以充分利用 4D 动态图像数据中的局部和非局部时间信息,用于运动检测。该网络在没有运动的患者扫描上进行了训练和评估,模拟了运动,因此可以获得运动的真实情况。在训练中使用了基于 65 个患者扫描的一百万个样本,在评估中使用了基于 20 个患者扫描的 600 个样本。还使用具有真实运动的另外 10 个患者数据集评估了所提出的方法。与传统的基于配准的方法和其他卷积神经网络 (CNN) 相比,所提出的 DeepMC 在运动估计和 MBF 量化准确性方面表现出优异的性能。训练完成后,DeepMC 比基于配准的方法快得多,并且可以轻松集成到临床工作流程中。在未来的工作中,需要在具有真实患者运动的临床环境中进一步评估这种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e88/8670362/8fa32d13d6d0/nihms-1760792-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验