Lin Meng-Chun, Kuo Hsion-Wen, Kao Mu-Rong, Lin Wen-Dar, Li Chen-Wei, Hung Kuo-Sheng, Yang Sheng-Chih, Yu Su-May, Ho Tuan-Hua David
Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, ROC.
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.
Biotechnol Biofuels. 2021 May 21;14(1):120. doi: 10.1186/s13068-021-01959-1.
Lignocellulolytic enzymes are essential for agricultural waste disposal and production of renewable bioenergy. Many commercialized cellulase mixtures have been developed, mostly from saprophytic or endophytic fungal species. The cost of complete cellulose digestion is considerable because a wide range of cellulolytic enzymes is needed. However, most fungi can only produce limited range of highly bioactive cellulolytic enzymes. We aimed to investigate a simple yet specific method for discovering unique enzymes so that fungal species producing a diverse group of cellulolytic enzymes can be identified.
The culture medium of an endophytic fungus, Daldinia caldariorum D263, contained a complete set of cellulolytic enzymes capable of effectively digesting cellulose residues into glucose. By taking advantage of the unique product inhibition property of β-glucosidases, we have established an improved zymography method that can easily distinguish β-glucosidase and exoglucanase activity. Our zymography method revealed that D263 can secrete a wide range of highly bioactive cellulases. Analyzing the assembled genome of D263, we found over 100 potential genes for cellulolytic enzymes that are distinct from those of the commercially used fungal species Trichoderma reesei and Aspergillus niger. We further identified several of these cellulolytic enzymes by mass spectrometry.
The genome of Daldinia caldariorum D263 has been sequenced and annotated taking advantage of a simple yet specific zymography method followed by mass spectrometry analysis, and it appears to encode and secrete a wide range of bioactive cellulolytic enzymes. The genome and cellulolytic enzyme secretion of this unique endophytic fungus should be of value for identifying active cellulolytic enzymes that can facilitate conversion of agricultural wastes to fermentable sugars for the industrial production of biofuels.
木质纤维素分解酶对于农业废弃物处理和可再生生物能源的生产至关重要。已经开发出许多商业化的纤维素酶混合物,大多来自腐生或内生真菌物种。由于需要多种纤维素分解酶,完全消化纤维素的成本相当高。然而,大多数真菌只能产生有限范围的高生物活性纤维素分解酶。我们旨在研究一种简单而特异的方法来发现独特的酶,以便能够鉴定出产生多种纤维素分解酶的真菌物种。
内生真菌火木层孔菌D263(Daldinia caldariorum D263)的培养基中含有一整套能够有效将纤维素残渣消化为葡萄糖的纤维素分解酶。利用β-葡萄糖苷酶独特的产物抑制特性,我们建立了一种改进的酶谱法,该方法能够轻松区分β-葡萄糖苷酶和外切葡聚糖酶活性。我们的酶谱法显示D263能够分泌多种高生物活性的纤维素酶。通过分析D263的组装基因组,我们发现了100多个潜在的纤维素分解酶基因,这些基因与商业使用的真菌里氏木霉(Trichoderma reesei)和黑曲霉(Aspergillus niger)的基因不同。我们通过质谱进一步鉴定了其中几种纤维素分解酶。
利用一种简单而特异的酶谱法随后进行质谱分析,对火木层孔菌D263的基因组进行了测序和注释,它似乎编码并分泌多种生物活性纤维素分解酶。这种独特的内生真菌的基因组和纤维素分解酶分泌对于鉴定能够促进农业废弃物转化为可发酵糖用于生物燃料工业生产的活性纤维素分解酶应该具有价值。