Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
Nat Commun. 2021 May 24;12(1):3065. doi: 10.1038/s41467-021-23351-1.
In living cells, microtubules (MTs) play pleiotropic roles, which require very different mechanical properties. Unlike the dynamic MTs found in the cytoplasm of metazoan cells, the specialized cortical MTs from Toxoplasma gondii, a prevalent human pathogen, are extraordinarily stable and resistant to detergent and cold treatments. Using single-particle cryo-EM, we determine their ex vivo structure and identify three proteins (TrxL1, TrxL2 and SPM1) as bona fide microtubule inner proteins (MIPs). These three MIPs form a mesh on the luminal surface and simultaneously stabilize the tubulin lattice in both longitudinal and lateral directions. Consistent with previous observations, deletion of the identified MIPs compromises MT stability and integrity under challenges by chemical treatments. We also visualize a small molecule like density at the Taxol-binding site of β-tubulin. Our results provide the structural basis to understand the stability of cortical MTs and suggest an evolutionarily conserved mechanism of MT stabilization from the inside.
在活细胞中,微管(MTs)发挥着多种作用,这需要非常不同的机械性能。与真核细胞细胞质中发现的动态 MTs 不同,来自普遍存在的人类病原体刚地弓形虫的特化皮质 MTs 非常稳定,能抵抗去污剂和低温处理。我们使用单颗粒冷冻电镜确定了它们的体外结构,并鉴定出三种蛋白质(TrxL1、TrxL2 和 SPM1)作为真正的微管内蛋白(MIPs)。这三种 MIPs 在管腔表面形成一个网格,并同时在纵向和横向方向上稳定微管晶格。与之前的观察结果一致,鉴定出的 MIPs 的缺失会在化学处理的挑战下损害 MT 的稳定性和完整性。我们还在 β-微管蛋白的紫杉醇结合部位可视化到小分子密度。我们的结果为理解皮质 MTs 的稳定性提供了结构基础,并从内部提出了一种微管稳定的进化保守机制。