Suppr超能文献

化能合成和光合细菌对陡峭沙漠干旱梯度上的初级生产力有不同的贡献。

Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient.

机构信息

Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.

School of Biological Sciences, Monash University, Clayton, VIC, Australia.

出版信息

ISME J. 2021 Nov;15(11):3339-3356. doi: 10.1038/s41396-021-01001-0. Epub 2021 May 25.

Abstract

Desert soils harbour diverse communities of aerobic bacteria despite lacking substantial organic carbon inputs from vegetation. A major question is therefore how these communities maintain their biodiversity and biomass in these resource-limiting ecosystems. Here, we investigated desert topsoils and biological soil crusts collected along an aridity gradient traversing four climatic regions (sub-humid, semi-arid, arid, and hyper-arid). Metagenomic analysis indicated these communities vary in their capacity to use sunlight, organic compounds, and inorganic compounds as energy sources. Thermoleophilia, Actinobacteria, and Acidimicrobiia were the most abundant and prevalent bacterial classes across the aridity gradient in both topsoils and biocrusts. Contrary to the classical view that these taxa are obligate organoheterotrophs, genome-resolved analysis suggested they are metabolically flexible, with the capacity to also use atmospheric H to support aerobic respiration and often carbon fixation. In contrast, Cyanobacteria were patchily distributed and only abundant in certain biocrusts. Activity measurements profiled how aerobic H oxidation, chemosynthetic CO fixation, and photosynthesis varied with aridity. Cell-specific rates of atmospheric H consumption increased 143-fold along the aridity gradient, correlating with increased abundance of high-affinity hydrogenases. Photosynthetic and chemosynthetic primary production co-occurred throughout the gradient, with photosynthesis dominant in biocrusts and chemosynthesis dominant in arid and hyper-arid soils. Altogether, these findings suggest that the major bacterial lineages inhabiting hot deserts use different strategies for energy and carbon acquisition depending on resource availability. Moreover, they highlight the previously overlooked roles of Actinobacteriota as abundant primary producers and trace gases as critical energy sources supporting productivity and resilience of desert ecosystems.

摘要

尽管沙漠土壤缺乏植被提供的大量有机碳输入,但仍存在多样化的好氧细菌群落。因此,一个主要问题是这些群落如何在这些资源有限的生态系统中维持其生物多样性和生物量。在这里,我们调查了沿干旱梯度采集的来自四个气候区(半湿润、半干旱、干旱和极干旱)的沙漠表土和生物土壤结皮。宏基因组分析表明,这些群落利用阳光、有机化合物和无机化合物作为能源的能力存在差异。在表土和生物结皮中,嗜热菌、放线菌和 Acidimicrobiia 是整个干旱梯度中最丰富和普遍的细菌类群。与这些类群是专性有机异养生物的经典观点相反,基于基因组的分析表明它们具有代谢灵活性,能够利用大气 H 支持好氧呼吸,并且通常能够进行碳固定。相比之下,蓝细菌呈斑块状分布,仅在某些生物结皮中丰富。活性测量分析了好氧 H 氧化、化能合成 CO 固定和光合作用如何随干旱程度而变化。沿着干旱梯度,有氧 H 消耗的细胞特定速率增加了 143 倍,这与高亲和力氢化酶丰度的增加相关。光合作用和化能合成初级生产在整个梯度中共存,生物结皮中以光合作用为主,干旱和极干旱土壤中以化能合成为主。总的来说,这些发现表明,栖息在炎热沙漠中的主要细菌类群根据资源可用性,使用不同的策略获取能量和碳。此外,它们强调了放线菌作为丰富的初级生产者以及痕量气体作为支持沙漠生态系统生产力和恢复力的关键能源的先前被忽视的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e021/8528921/244d8de4af0b/41396_2021_1001_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验