Ramesh Jayroop, Aburukba Raafat, Sagahyroon Assim
Computer Science and Engineering American University of Sharjah Sharjah United Arab Emirates.
Healthc Technol Lett. 2021 May 2;8(3):45-57. doi: 10.1049/htl2.12010. eCollection 2021 Jun.
Diabetes is a metabolic disease that affects millions of people each year. It is associated with an increased likelihood of vital organ failures and decreased quality of life. Early detection and regular monitoring are crucial for managing diabetes. Remote patient monitoring can facilitate effective intervention and treatment paradigms using current technology. This work proposes an end-to-end remote monitoring framework for automated diabetes risk prediction and management, using personal health devices, smart wearables and smartphones. A support vector machine was developed for diabetes risk prediction using the Pima Indian Diabetes Database, after feature scaling, imputation, selection and augmentation. This work achieved the performance metrics of accuracy, sensitivity and specificity scores at 83.20%, 87.20% and 79% respectively through the tenfold stratified cross validation method, which is competitive with existing methods. Patients can use multiple healthcare devices, smartphones and smartwatches to measure vital parameters, curb the progression of diabetes and close the communication loop with medical professionals. The proposed framework enables medical professionals to make informed decisions based on the latest diabetes risk predictions and lifestyle insights while attaining unobtrusiveness, reduced cost, and vendor interoperability.
糖尿病是一种代谢性疾病,每年影响着数百万人。它与重要器官衰竭的可能性增加以及生活质量下降有关。早期检测和定期监测对于糖尿病管理至关重要。远程患者监测可以利用现有技术促进有效的干预和治疗模式。这项工作提出了一个端到端的远程监测框架,用于使用个人健康设备、智能可穿戴设备和智能手机进行自动化糖尿病风险预测和管理。在进行特征缩放、插补、选择和增强后,使用皮马印第安人糖尿病数据库开发了一种支持向量机用于糖尿病风险预测。通过十折分层交叉验证方法,这项工作分别实现了83.20%、87.20%和79%的准确率、灵敏度和特异性得分等性能指标,与现有方法具有竞争力。患者可以使用多种医疗设备、智能手机和智能手表来测量生命体征参数,遏制糖尿病的进展,并与医疗专业人员建立沟通循环。所提出的框架使医疗专业人员能够根据最新的糖尿病风险预测和生活方式洞察做出明智的决策,同时实现不干扰、降低成本和供应商互操作性。