Suppr超能文献

具有高电功率密度和高于14%的电池效率的近场热光伏转换

Near-Field Thermophotovoltaic Conversion with High Electrical Power Density and Cell Efficiency above 14.

作者信息

Lucchesi Christophe, Cakiroglu Dilek, Perez Jean-Philippe, Taliercio Thierry, Tournié Eric, Chapuis Pierre-Olivier, Vaillon Rodolphe

机构信息

Univ Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, F-69621 Villeurbanne, France.

IES, Univ Montpellier, CNRS, 34000 Montpellier, France.

出版信息

Nano Lett. 2021 Jun 9;21(11):4524-4529. doi: 10.1021/acs.nanolett.0c04847. Epub 2021 May 26.

Abstract

A huge amount of thermal energy is available close to material surfaces in radiative and nonradiative states, which can be useful for matter characterization or energy harvesting. Even though a full class of novel nanoengineered devices has been predicted over the last two decades for exploiting near-field thermal photons, efficient near-field thermophotovoltaic conversion could not be achieved experimentally until now. Here, we realize a proof of principle by using a micrometer-sized indium antimonide photovoltaic cell cooled at 77 K and approached at nanometer distances from a hot (∼730 K) graphite microsphere emitter. We demonstrate a near-field power conversion efficiency of the cell above 14% and unprecedented electrical power density outputs (0.75 W cm), which are orders of magnitude larger than all previous attempts. These results highlight that near-field thermophotovoltaic converters are now competing with other thermal-to-electrical conversion devices and also pave the way for efficient photoelectric detection of near-field thermal photons.

摘要

在辐射和非辐射状态下,靠近材料表面可获得大量热能,这对于物质表征或能量收集可能是有用的。尽管在过去二十年中已经预测了一整套新型纳米工程器件用于利用近场热光子,但直到现在,高效的近场热光伏转换仍无法通过实验实现。在此,我们通过使用一个在77 K下冷却且与一个热的(约730 K)石墨微球发射器相距纳米距离的微米级锑化铟光伏电池实现了原理验证。我们展示了该电池高于14%的近场功率转换效率以及前所未有的电功率密度输出(0.75 W/cm²),这比之前所有尝试都高出几个数量级。这些结果表明,近场热光伏转换器现在正在与其他热电转换设备竞争,也为近场热光子的高效光电探测铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验