Zhang Jihong, Yang Bing, Shi Kezhang, Liu Haotuo, Wu Xiaohu
School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, Shandong, P. R. China.
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
Nanophotonics. 2023 Apr 10;12(10):1833-1846. doi: 10.1515/nanoph-2022-0730. eCollection 2023 May.
Coupling of surface plasmon polaritons (SPPs) supported by graphene and hyperbolic phonon polaritons (HPPs) supported by hyperbolic materials (HMs) could effectively promote photon tunneling, and hence the radiative heat transfer. In this work, we investigate the polariton hybridization phenomena on near-field radiative heat transfer (NFRHT) in multilayer heterostructures, which consist of periodic graphene/-MoO cells. Numerical results show that increasing the graphene/α-MoO cells can effectively enhance the NFRHT when the vacuum gap is less than 50 nm, but suppresses the enhanced performance with larger gap distance. This depends on the coupling of SPPs and HPPs in the periodic structure, which is analyzed by the energy transmission coefficients distributed in the wavevector space. The influence of the thickness of the α-MoO film and the chemical potential of graphene on the NFRHT is investigated. The findings in this work may guide designing high-performance near-field energy transfer and conversion devices based on coupling polaritons.
由石墨烯支持的表面等离激元极化激元(SPP)与由双曲线材料(HM)支持的双曲线声子极化激元(HPP)的耦合可以有效地促进光子隧穿,从而促进辐射热传递。在这项工作中,我们研究了由周期性石墨烯/α-MoO 单元组成的多层异质结构中近场辐射热传递(NFRHT)的极化激元杂交现象。数值结果表明,当真空间隙小于50 nm时,增加石墨烯/α-MoO 单元可以有效地增强 NFRHT,但在较大的间隙距离下会抑制增强性能。这取决于周期性结构中 SPP 和 HPP 的耦合,通过分布在波矢空间中的能量传输系数进行分析。研究了α-MoO 薄膜厚度和石墨烯化学势对 NFRHT 的影响。这项工作中的发现可能会指导基于耦合极化激元设计高性能近场能量转移和转换装置。