Suppr超能文献

基于生成对抗网络的活体共聚焦显微镜图像下角膜基底部神经的自动分割。

Generative Adversarial Network Based Automatic Segmentation of Corneal Subbasal Nerves on In Vivo Confocal Microscopy Images.

机构信息

Koç University Research Center for Translational Medicine, Koç University, Istanbul, Turkey.

Techy Bilişim Ltd., Eskişehir, Turkey.

出版信息

Transl Vis Sci Technol. 2021 May 3;10(6):33. doi: 10.1167/tvst.10.6.33.

Abstract

PURPOSE

In vivo confocal microscopy (IVCM) is a noninvasive, reproducible, and inexpensive diagnostic tool for corneal diseases. However, widespread and effortless image acquisition in IVCM creates serious image analysis workloads on ophthalmologists, and neural networks could solve this problem quickly. We have produced a novel deep learning algorithm based on generative adversarial networks (GANs), and we compare its accuracy for automatic segmentation of subbasal nerves in IVCM images with a fully convolutional neural network (U-Net) based method.

METHODS

We have collected IVCM images from 85 subjects. U-Net and GAN-based image segmentation methods were trained and tested under the supervision of three clinicians for the segmentation of corneal subbasal nerves. Nerve segmentation results for GAN and U-Net-based methods were compared with the clinicians by using Pearson's R correlation, Bland-Altman analysis, and receiver operating characteristics (ROC) statistics. Additionally, different noises were applied on IVCM images to evaluate the performances of the algorithms with noises of biomedical imaging.

RESULTS

The GAN-based algorithm demonstrated similar correlation and Bland-Altman analysis results with U-Net. The GAN-based method showed significantly higher accuracy compared to U-Net in ROC curves. Additionally, the performance of the U-Net deteriorated significantly with different noises, especially in speckle noise, compared to GAN.

CONCLUSIONS

This study is the first application of GAN-based algorithms on IVCM images. The GAN-based algorithms demonstrated higher accuracy than U-Net for automatic corneal nerve segmentation in IVCM images, in patient-acquired images and noise applied images. This GAN-based segmentation method can be used as a facilitating diagnostic tool in ophthalmology clinics.

TRANSLATIONAL RELEVANCE

Generative adversarial networks are emerging deep learning models for medical image processing, which could be important clinical tools for rapid segmentation and analysis of corneal subbasal nerves in IVCM images.

摘要

目的

共焦激光角膜显微镜(IVCM)是一种非侵入性、可重复性和廉价的角膜疾病诊断工具。然而,IVCM 中广泛且轻松的图像采集给眼科医生带来了严重的图像分析工作量,而神经网络可以快速解决这个问题。我们开发了一种基于生成对抗网络(GAN)的新型深度学习算法,并比较了该算法在自动分割 IVCM 图像中基底下神经方面的准确性与基于全卷积神经网络(U-Net)的方法。

方法

我们从 85 名患者中收集了 IVCM 图像。U-Net 和基于 GAN 的图像分割方法在三位临床医生的监督下进行了训练和测试,以分割角膜基底下神经。通过 Pearson R 相关性、Bland-Altman 分析和受试者工作特征(ROC)统计,将 GAN 和基于 U-Net 的方法的神经分割结果与临床医生进行了比较。此外,还在 IVCM 图像上应用了不同的噪声,以评估算法在生物医学成像噪声下的性能。

结果

基于 GAN 的算法与 U-Net 具有相似的相关性和 Bland-Altman 分析结果。与 U-Net 相比,基于 GAN 的方法在 ROC 曲线中表现出更高的准确性。此外,与 GAN 相比,U-Net 在不同噪声下的性能明显恶化,尤其是在斑点噪声下。

结论

这是首次将基于 GAN 的算法应用于 IVCM 图像。基于 GAN 的算法在自动角膜神经分割方面的准确性优于 U-Net,无论是在患者采集的图像还是在应用噪声的图像中。这种基于 GAN 的分割方法可以作为眼科临床的一种辅助诊断工具。

翻译

王春旭

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9279/8161698/f6031a194ea6/tvst-10-6-33-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验