Suppr超能文献

机器学习算法揭示了线粒体动态的秘密。

Machine learning algorithms reveal the secrets of mitochondrial dynamics.

机构信息

Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.

NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

出版信息

EMBO Mol Med. 2021 Jun 7;13(6):e14316. doi: 10.15252/emmm.202114316. Epub 2021 May 27.

Abstract

Mitochondria exist as dynamic networks whose morphology is driven by the complex interplay between fission and fusion events. Failure to modulate these processes can be detrimental to human health as evidenced by dominantly inherited, pathogenic variants in OPA1, an effector enzyme of mitochondrial fusion, that lead to network fragmentation, cristae dysmorphology and impaired oxidative respiration, manifesting typically as isolated optic atrophy. However, a significant number of patients develop more severe, systemic phenotypes, although no genetic modifiers of OPA1-related disease have been identified to date. In this issue of EMBO Molecular Medicine, supervised machine learning algorithms underlie a novel tool that enables automated, high throughput and unbiased screening of changes in mitochondrial morphology measured using confocal microscopy. By coupling this approach with a bespoke siRNA library targeting the entire mitochondrial proteome, the work described by Cretin and colleagues yielded significant insight into mitochondrial biology, discovering 91 candidate genes whose endogenous depletion can remedy impaired mitochondrial dynamics caused by OPA1 deficiency.

摘要

线粒体以动态网络的形式存在,其形态由分裂和融合事件之间的复杂相互作用驱动。如果不能调节这些过程,可能会对人类健康造成危害,这可以从OPA1 的显性遗传致病性变体中得到证明,OPA1 是线粒体融合的效应酶,它导致网络碎片化、嵴形态异常和氧化呼吸受损,通常表现为孤立性视神经萎缩。然而,大量患者出现更严重的全身性表型,尽管迄今为止尚未发现 OPA1 相关疾病的遗传修饰因子。在本期《EMBO 分子医学》中,受监督的机器学习算法为一种新工具提供了基础,该工具能够使用共聚焦显微镜自动、高通量和无偏地筛选线粒体形态变化。通过将这种方法与针对整个线粒体蛋白质组的定制 siRNA 文库相结合,Cretin 及其同事的工作深入了解了线粒体生物学,发现了 91 个候选基因,其内源缺失可以纠正由 OPA1 缺乏引起的线粒体动力学受损。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e92/8185547/eb076f1b207d/EMMM-13-e14316-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验