Mitochondrial Biology Group, Institut Pasteur, CNRS UMR 3691, Paris, France.
Université de Paris, Paris, France.
EMBO Mol Med. 2021 Jun 7;13(6):e13579. doi: 10.15252/emmm.202013579. Epub 2021 May 20.
Mutations in OPA1 cause autosomal dominant optic atrophy (DOA) as well as DOA+, a phenotype characterized by more severe neurological deficits. OPA1 deficiency causes mitochondrial fragmentation and also disrupts cristae, respiration, mitochondrial DNA (mtDNA) maintenance, and cell viability. It has not yet been established whether phenotypic severity can be modulated by genetic modifiers of OPA1. We screened the entire known mitochondrial proteome (1,531 genes) to identify genes that control mitochondrial morphology using a first-in-kind imaging pipeline. We identified 145 known and novel candidate genes whose depletion promoted elongation or fragmentation of the mitochondrial network in control fibroblasts and 91 in DOA+ patient fibroblasts that prevented mitochondrial fragmentation, including phosphatidyl glycerophosphate synthase (PGS1). PGS1 depletion reduces CL content in mitochondria and rebalances mitochondrial dynamics in OPA1-deficient fibroblasts by inhibiting mitochondrial fission, which improves defective respiration, but does not rescue mtDNA depletion, cristae dysmorphology, or apoptotic sensitivity. Our data reveal that the multifaceted roles of OPA1 in mitochondria can be functionally uncoupled by modulating mitochondrial lipid metabolism, providing novel insights into the cellular relevance of mitochondrial fragmentation.
OPA1 基因突变会导致常染色体显性视神经萎缩(DOA)以及 DOA+,后者的表型特征是更严重的神经功能缺损。OPA1 缺乏会导致线粒体碎片化,并破坏嵴、呼吸、线粒体 DNA(mtDNA)维持和细胞活力。目前尚不清楚表型严重程度是否可以通过 OPA1 的遗传修饰因子来调节。我们筛选了整个已知的线粒体蛋白质组(1531 个基因),使用首创的成像管道来鉴定控制线粒体形态的基因。我们鉴定了 145 个已知和新的候选基因,它们的耗竭促进了对照成纤维细胞中线粒体网络的伸长或碎片化,而在 DOA+患者成纤维细胞中则有 91 个基因阻止了线粒体碎片化,其中包括磷酸甘油酸磷酸合酶(PGS1)。PGS1 耗竭会减少线粒体中的 CL 含量,并通过抑制线粒体分裂使 OPA1 缺陷型成纤维细胞中的线粒体动力学重新平衡,从而改善呼吸缺陷,但不能挽救 mtDNA 耗竭、嵴形态异常或凋亡敏感性。我们的数据表明,OPA1 在线粒体中的多方面作用可以通过调节线粒体脂质代谢来实现功能分离,为线粒体碎片化的细胞相关性提供了新的见解。