Akella Aravind, Akella Sudheer
Qualicel Global Inc., Huntington Station, NY 11746, USA.
Future Sci OA. 2021 Mar 29;7(6):FSO698. doi: 10.2144/fsoa-2020-0206.
The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes.
MATERIALS & METHODS: In this study, we applied six different ML algorithms to predict the presence of CAD amongst patients listed in 'the Cleveland dataset.' The generated computer code is provided as a working open source solution with the ultimate goal to achieve a viable clinical tool for CAD detection.
All six ML algorithms achieved accuracies greater than 80%, with the 'neural network' algorithm achieving accuracy greater than 93%. The recall achieved with the 'neural network' model is also the highest of the six models (0.93), indicating that predictive ML models may provide diagnostic value in CAD.
冠状动脉疾病(CAD)是一种在全球范围内高度流行的疾病,其发展受到多种可改变的风险因素影响。使用机器学习(ML)算法构建的预测模型可能有助于临床医生及时检测CAD,并改善治疗结果。
在本研究中,我们应用六种不同的ML算法来预测列于“克利夫兰数据集”中的患者是否患有CAD。生成的计算机代码作为一个有效的开源解决方案提供,最终目标是实现一种可行的CAD检测临床工具。
所有六种ML算法的准确率均超过80%,其中“神经网络”算法的准确率超过93%。“神经网络”模型的召回率也是六个模型中最高的(0.93),这表明预测性ML模型可能在CAD诊断中具有价值。