Suppr超能文献

用于预测冠状动脉疾病的机器学习算法:迈向开源解决方案的努力。

Machine learning algorithms for predicting coronary artery disease: efforts toward an open source solution.

作者信息

Akella Aravind, Akella Sudheer

机构信息

Qualicel Global Inc., Huntington Station, NY 11746, USA.

出版信息

Future Sci OA. 2021 Mar 29;7(6):FSO698. doi: 10.2144/fsoa-2020-0206.

Abstract

AIM

The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes.

MATERIALS & METHODS: In this study, we applied six different ML algorithms to predict the presence of CAD amongst patients listed in 'the Cleveland dataset.' The generated computer code is provided as a working open source solution with the ultimate goal to achieve a viable clinical tool for CAD detection.

RESULTS

All six ML algorithms achieved accuracies greater than 80%, with the 'neural network' algorithm achieving accuracy greater than 93%. The recall achieved with the 'neural network' model is also the highest of the six models (0.93), indicating that predictive ML models may provide diagnostic value in CAD.

摘要

目的

冠状动脉疾病(CAD)是一种在全球范围内高度流行的疾病,其发展受到多种可改变的风险因素影响。使用机器学习(ML)算法构建的预测模型可能有助于临床医生及时检测CAD,并改善治疗结果。

材料与方法

在本研究中,我们应用六种不同的ML算法来预测列于“克利夫兰数据集”中的患者是否患有CAD。生成的计算机代码作为一个有效的开源解决方案提供,最终目标是实现一种可行的CAD检测临床工具。

结果

所有六种ML算法的准确率均超过80%,其中“神经网络”算法的准确率超过93%。“神经网络”模型的召回率也是六个模型中最高的(0.93),这表明预测性ML模型可能在CAD诊断中具有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bb4/8147740/9e6b4cd8e278/fsoa-07-698-g1.jpg

相似文献

3
A new machine learning technique for an accurate diagnosis of coronary artery disease.一种用于准确诊断冠心病的新机器学习技术。
Comput Methods Programs Biomed. 2019 Oct;179:104992. doi: 10.1016/j.cmpb.2019.104992. Epub 2019 Jul 24.
5
Machine Learning Predictive Models for Coronary Artery Disease.用于冠状动脉疾病的机器学习预测模型
SN Comput Sci. 2021;2(5):350. doi: 10.1007/s42979-021-00731-4. Epub 2021 Jun 22.

引用本文的文献

本文引用的文献

1
Current applications of big data and machine learning in cardiology.大数据与机器学习在心脏病学中的当前应用。
J Geriatr Cardiol. 2019 Aug;16(8):601-607. doi: 10.11909/j.issn.1671-5411.2019.08.002.
6
Risk Factors for Coronary Artery Disease: Historical Perspectives.冠状动脉疾病的风险因素:历史视角
Heart Views. 2017 Jul-Sep;18(3):109-114. doi: 10.4103/HEARTVIEWS.HEARTVIEWS_106_17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验