Suppr超能文献

使用各种量表评估TikTok上关于冠状动脉疾病的视频质量,以检验与视频特征和高质量内容的相关性。

Evaluating the quality of TikTok videos on coronary artery disease using various scales to examine correlations with video characteristics and high-quality content.

作者信息

Hao Peng, Liu Guixin, Lian Shuang, Huang Jiaxu, Zhao Lin

机构信息

Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.

Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.

出版信息

Sci Rep. 2025 Mar 17;15(1):9189. doi: 10.1038/s41598-025-93986-3.

Abstract

Background Coronary artery disease (CAD) is a major public health concern, yet reliable sources of relevant information are limited. TikTok, a popular social media platform in China, hosts diverse health-related videos, including those on CAD; however, their quality varies and is largely unassessed. Objective This study aimed to investigate the quality of CAD-related videos on TikTok and explore the correlation between video characteristics and high-quality videos. Methods A total of 122 CAD-related short videos on TikTok were analyzed on July 18, 2023. Basic video information and sources were extracted. Two evaluators independently scored each video using DISCERN (a health information quality scale), the Patient Education Materials Assessment Tool (PEMAT) and the Health on the Net (HONcode) scales. Videos were categorized into four groups based on their source, with the medical professional group further categorized by job titles. Simple linear analysis was used to examine the linear relationship across different scales and to explore the relationship between video characteristics (video length, time since posting, the number of "likes", comments and "favorites", and the number of followers of the video creator) and different scales. Results AQVideos were categorized into four groups based on their source: medical professionals (n = 98, 80.3%), user-generated content (n = 11, 9.0%), news programs (n = 4, 3.3%), and health agencies or organizations (n = 9, 7.4%). The score of DISCERN was 46.5 ± 7.6/80, the score rate of PEMAT was 79.2 ± 12.6%/100%, and the number of score items for HONcode was 1.4 ± 0.6/8. In Sect. 1 of DISCERN, user-generated content scored highest (29.1 ± 3.6), followed by medical professionals (28.6 ± 2.4), health agencies or organizations (28.0 ± 0.0) and news programs (28.0 ± 0.0)(P = 0.047). In HONcode, most videos met only one or two of the eight evaluation criteria. PEMAT scores varied slightly across categories without significant differences (P = 0.758). Medical professionals were further divided into senior (n = 69, 70.4%) and intermediate (n = 29, 29.6%) groups, with intermediate professionals scoring higher in DISCERN (P < 0.001). In simple linear analysis models, no linear correlation was found between DISCERN and PEMAT scores (P = 0.052). Time since posting on TikTok was negatively correlated with DISCERN (P = 0.021) and PEMAT scores (P = 0.037), and the number of "favorites" was positively correlated to DISCERN score (P = 0.007). Conclusion The quality of CAD-related videos on China's TikTok is inconsistent and varies across different evaluation scales. Videos posted by medical professionals with intermediate titles tended to offer higher quality, more up-to-date content, as reflected by higher "favorite" counts. HONcode may not be suitable for short video evaluation due to its low score rate, while DISCERN and PEMAT may be effective tools for short video evaluation. However, their lack of consistency in evaluation dimensions highlight the need for a tailored scoring system for short videos.

摘要

背景 冠状动脉疾病(CAD)是一个重大的公共卫生问题,但相关信息的可靠来源有限。抖音是中国一个受欢迎的社交媒体平台,上面有各种与健康相关的视频,包括关于CAD的视频;然而,它们的质量参差不齐,且大多未被评估。目的 本研究旨在调查抖音上与CAD相关视频的质量,并探讨视频特征与高质量视频之间的相关性。方法 2023年7月18日,共分析了抖音上122个与CAD相关的短视频。提取了基本视频信息和来源。两名评估人员使用DISCERN(一种健康信息质量量表)、患者教育材料评估工具(PEMAT)和健康网络(HONcode)量表对每个视频进行独立评分。视频根据其来源分为四组,医学专业人员组再按职称进一步分类。使用简单线性分析来检验不同量表之间的线性关系,并探讨视频特征(视频长度、发布时间、“点赞”数、评论数和“收藏”数以及视频创作者的关注者数量)与不同量表之间的关系。结果 视频根据其来源分为四组:医学专业人员(n = 98,80.3%)、用户生成内容(n = 11,9.0%)、新闻节目(n = 4,3.3%)以及健康机构或组织(n = 9,7.4%)。DISCERN的评分为46.5±7.6/80,PEMAT的评分率为79.2±12.6%/100%,HONcode的评分项目数为1.4±0.6/8。在DISCERN的第1部分中,用户生成内容得分最高(29.1±3.6),其次是医学专业人员(28.6±2.4)、健康机构或组织(28.0±0.0)和新闻节目(28.0±0.0)(P = 0.047)。在HONcode中,大多数视频仅符合八项评估标准中的一两项。PEMAT评分在各类别之间略有差异,但无显著差异(P = 0.758)。医学专业人员进一步分为高级(n = 69,70.4%)和中级(n = 29,29.6%)两组,中级专业人员在DISCERN中的得分更高(P < 0.001)。在简单线性分析模型中,未发现DISCERN与PEMAT评分之间存在线性相关性(P = 0.052)。在抖音上的发布时间与DISCERN(P = 0.021)和PEMAT评分(P = 0.037)呈负相关,“收藏”数与DISCERN评分呈正相关(P = 0.007)。结论 中国抖音上与CAD相关视频的质量参差不齐,在不同评估量表上存在差异。中级职称医学专业人员发布的视频往往提供更高质量、更新的内容,“收藏”数较高即反映了这一点。由于HONcode的评分率较低,可能不适用于短视频评估,而DISCERN和PEMAT可能是短视频评估的有效工具。然而,它们在评估维度上缺乏一致性,凸显了为短视频量身定制评分系统的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe4/11914095/7cafa7d8ba2b/41598_2025_93986_Fig4_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验