Centre for Immunity, Infection and Evolution and School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
Usher Institute, University of Edinburgh, Edinburgh, UK.
Philos Trans R Soc Lond B Biol Sci. 2021 Jul 19;376(1829):20200282. doi: 10.1098/rstb.2020.0282. Epub 2021 May 31.
Retrospective analyses of the non-pharmaceutical interventions (NPIs) used to combat the ongoing COVID-19 outbreak have highlighted the potential of optimizing interventions. These optimal interventions allow policymakers to manage NPIs to minimize the epidemiological and human health impacts of both COVID-19 and the intervention itself. Here, we use a susceptible-infectious-recovered (SIR) mathematical model to explore the feasibility of optimizing the duration, magnitude and trigger point of five different NPI scenarios to minimize the peak prevalence or the attack rate of a simulated UK COVID-19 outbreak. An optimal parameter space to minimize the peak prevalence or the attack rate was identified for each intervention scenario, with each scenario differing with regard to how reductions to transmission were modelled. However, we show that these optimal interventions are fragile, sensitive to epidemiological uncertainty and prone to implementation error. We highlight the use of robust, but suboptimal interventions as an alternative, with these interventions capable of mitigating the peak prevalence or the attack rate over a broader, more achievable parameter space, but being less efficacious than theoretically optimal interventions. This work provides an illustrative example of the concept of intervention optimization across a range of different NPI strategies. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.
回顾分析用于应对当前 COVID-19 疫情的非药物干预措施(NPIs),突出了优化干预措施的潜力。这些最佳干预措施使政策制定者能够管理 NPIs,以最大程度地降低 COVID-19 和干预本身对流行病学和人类健康的影响。在这里,我们使用易感-感染-恢复(SIR)数学模型来探索优化五种不同 NPI 情景的持续时间、幅度和触发点的可行性,以最小化模拟英国 COVID-19 疫情的峰值流行率或发病率。为每个干预情景确定了一个最小化峰值流行率或发病率的最优参数空间,每个情景在如何建模传播减少方面存在差异。然而,我们表明,这些最佳干预措施是脆弱的,对流行病学不确定性敏感,容易出现实施错误。我们强调使用稳健但次优的干预措施作为替代方案,这些干预措施能够在更广泛、更易实现的参数空间内减轻峰值流行率或发病率,但效果不如理论上最优的干预措施。这项工作提供了一个跨一系列不同 NPI 策略进行干预优化概念的示例。本文是“模型塑造了英国 COVID-19 大流行早期的应对措施”主题特刊的一部分。