Suppr超能文献

简便的仿生合成法制备氧化铁包裹的二氧化硅纳米胶囊。

Facile bioinspired synthesis of iron oxide encapsulating silica nanocapsules.

机构信息

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072 Australia.

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072 Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland. St. Lucia, Queensland 4072 Australia.

出版信息

J Colloid Interface Sci. 2021 Nov;601:78-84. doi: 10.1016/j.jcis.2021.05.021. Epub 2021 May 8.

Abstract

Iron oxide nanoparticles have been extensively studied for a wide variety of applications. However, there remains a challenge in developing hierarchical magnetic iron oxide nanoparticles as existing synthetic techniques require harsh, toxic chemical conditions and high temperatures or give poorly defined product with weak magnetic properties. In addition, drug loading is limited to post-loading methods such as chemical conjugation or surface adsorption that have poor loading efficiency and are prone to premature drug release. We report a facile biomimetic method for making iron oxide nanoparticle-loaded silica nanocapsules based on a bimodal catalytic peptide surfactant stabilized nanoemulsion template. Iron oxide nanoparticles can be preloaded into the oil phase of the nanoemulsion at tunable concentrations, and the excellent surface activity of the designed bimodal peptide in combination with sufficient electrostatic repulsion promotes the stability of the nanoemulsions. Biosilicification induced by the catalytic peptide module leads to the formation of silica shell nanocapsules containing a magnetic oil core. The bioinspired silica nanocapsules encapsulating iron oxide nanoparticles demonstrate the next-generation of magnetic nanostructures for drug delivery applications.

摘要

氧化铁纳米粒子因其在各种应用中的广泛研究而备受关注。然而,开发分级磁性氧化铁纳米粒子仍然具有挑战性,因为现有的合成技术需要苛刻的、有毒的化学条件和高温,或者得到的产物定义不明确,磁性较弱。此外,药物负载仅限于后加载方法,如化学偶联或表面吸附,这些方法的负载效率较差,容易导致药物过早释放。我们报告了一种基于双模态催化肽表面活性剂稳定的纳米乳液模板制备负载氧化铁纳米粒子的硅纳米胶囊的简便仿生方法。氧化铁纳米粒子可以在可调浓度下预先加载到纳米乳液的油相中,并且设计的双模态肽的优异表面活性和足够的静电排斥作用促进了纳米乳液的稳定性。催化肽模块诱导的生物硅化导致形成含有磁性油芯的硅壳纳米胶囊。这种仿生硅纳米胶囊封装氧化铁纳米粒子,展示了下一代用于药物输送应用的磁性纳米结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验