Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN 37996, USA.
Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
Sensors (Basel). 2021 May 20;21(10):3553. doi: 10.3390/s21103553.
Parkinson's disease medication treatment planning is generally based on subjective data obtained through clinical, physician-patient interactions. The Personal KinetiGraph™ (PKG) and similar wearable sensors have shown promise in enabling objective, continuous remote health monitoring for Parkinson's patients. In this proof-of-concept study, we propose to use objective sensor data from the PKG and apply machine learning to cluster patients based on levodopa regimens and response. The resulting clusters are then used to enhance treatment planning by providing improved initial treatment estimates to supplement a physician's initial assessment. We apply k-means clustering to a dataset of within-subject Parkinson's medication changes-clinically assessed by the MDS-Unified Parkinson's Disease Rating Scale-III (MDS-UPDRS-III) and the PKG sensor for movement staging. A random forest classification model was then used to predict patients' cluster allocation based on their respective demographic information, MDS-UPDRS-III scores, and PKG time-series data. Clinically relevant clusters were partitioned by levodopa dose, medication administration frequency, and total levodopa equivalent daily dose-with the PKG providing similar symptomatic assessments to physician MDS-UPDRS-III scores. A random forest classifier trained on demographic information, MDS-UPDRS-III scores, and PKG time-series data was able to accurately classify subjects of the two most demographically similar clusters with an accuracy of 86.9%, an F1 score of 90.7%, and an AUC of 0.871. A model that relied solely on demographic information and PKG time-series data provided the next best performance with an accuracy of 83.8%, an F1 score of 88.5%, and an AUC of 0.831, hence further enabling fully remote assessments. These computational methods demonstrate the feasibility of using sensor-based data to cluster patients based on their medication responses with further potential to assist with medication recommendations.
帕金森病药物治疗方案通常基于通过临床、医患互动获得的主观数据。Personal KinetiGraph™(PKG)和类似的可穿戴传感器已显示出在为帕金森病患者提供客观、连续的远程健康监测方面的潜力。在这项概念验证研究中,我们提议使用来自 PKG 的客观传感器数据,并应用机器学习根据左旋多巴方案和反应对患者进行聚类。然后,将这些聚类结果用于通过提供改进的初始治疗估计来增强治疗计划,以补充医生的初始评估。我们应用 k-均值聚类算法对一个数据集进行分析,该数据集包含帕金森病药物变化的个体内数据-由 MDS-统一帕金森病评定量表第三部分(MDS-UPDRS-III)和 PKG 传感器对运动阶段进行临床评估。然后,使用随机森林分类模型根据患者的各自人口统计学信息、MDS-UPDRS-III 评分和 PKG 时间序列数据预测患者的聚类分配。根据左旋多巴剂量、药物给药频率和总左旋多巴等效日剂量对具有临床相关性的聚类进行划分-PKG 提供的症状评估与医生 MDS-UPDRS-III 评分相似。基于人口统计学信息、MDS-UPDRS-III 评分和 PKG 时间序列数据训练的随机森林分类器能够准确地对两个最相似的人口统计学聚类的受试者进行分类,准确率为 86.9%,F1 得分为 90.7%,AUC 为 0.871。仅依赖于人口统计学信息和 PKG 时间序列数据的模型提供了次优的性能,准确率为 83.8%,F1 得分为 88.5%,AUC 为 0.831,因此进一步实现了完全远程评估。这些计算方法证明了使用基于传感器的数据根据患者的药物反应对患者进行聚类的可行性,并进一步有可能协助药物推荐。