Suppr超能文献

DNA 寡聚物、嵌入剂和紫外线对 DNA 折纸结构的构象控制

Conformational Control of DNA Origami by DNA Oligomers, Intercalators and UV Light.

作者信息

Li Ruixin, Chen Haorong, Lee Hyeongwoon, Choi Jong Hyun

机构信息

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.

出版信息

Methods Protoc. 2021 May 22;4(2):38. doi: 10.3390/mps4020038.

Abstract

DNA origami has garnered great attention due to its excellent programmability and precision. It offers a powerful means to create complex nanostructures which may not be possible by other methods. The macromolecular structures may be used as static templates for arranging proteins and other molecules. They are also capable of undergoing structural transformation in response to external signals, which may be exploited for sensing and actuation at the nanoscale. Such on-demand reconfigurations are executed mostly by DNA oligomers through base-pairing and/or strand displacement, demonstrating drastic shape changes between two different states, for example, open and close. Recent studies have developed new mechanisms to modulate the origami conformation in a controllable, progressive manner. Here we present several methods for conformational control of DNA origami nanostructures including chemical adducts and UV light as well as widely applied DNA oligomers. The detailed methods should be useful for beginners in the field of DNA nanotechnology.

摘要

DNA折纸术因其出色的可编程性和精确性而备受关注。它提供了一种强大的手段来创建其他方法可能无法实现的复杂纳米结构。这些大分子结构可用作排列蛋白质和其他分子的静态模板。它们还能够响应外部信号进行结构转变,这可用于纳米级的传感和驱动。这种按需重新配置大多由DNA寡聚物通过碱基配对和/或链置换来执行,展示了两种不同状态(例如打开和关闭)之间的剧烈形状变化。最近的研究已经开发出以可控、渐进的方式调节折纸构象的新机制。在这里,我们介绍几种用于DNA折纸纳米结构构象控制的方法,包括化学加合物、紫外线以及广泛应用的DNA寡聚物。详细方法对DNA纳米技术领域的初学者应该会很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b16/8163164/56c645c12ff9/mps-04-00038-g001.jpg

相似文献

1
Conformational Control of DNA Origami by DNA Oligomers, Intercalators and UV Light.
Methods Protoc. 2021 May 22;4(2):38. doi: 10.3390/mps4020038.
2
Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts.
ACS Nano. 2016 May 24;10(5):4989-96. doi: 10.1021/acsnano.6b01339. Epub 2016 Apr 12.
3
DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.
Acc Chem Res. 2017 Dec 19;50(12):2906-2914. doi: 10.1021/acs.accounts.7b00389. Epub 2017 Sep 27.
4
DNA Origami Nanomachines.
Molecules. 2018 Jul 18;23(7):1766. doi: 10.3390/molecules23071766.
5
Switchable DNA-origami nanostructures that respond to their environment and their applications.
Biophys Rev. 2018 Oct;10(5):1283-1293. doi: 10.1007/s12551-018-0462-z. Epub 2018 Oct 2.
6
Nanomechanical molecular devices made of DNA origami.
Acc Chem Res. 2014 Jun 17;47(6):1742-9. doi: 10.1021/ar400328v. Epub 2014 Apr 29.
8
Designed Intercalators for Modification of DNA Origami Surface Properties.
Chemistry. 2015 Jun 22;21(26):9440-6. doi: 10.1002/chem.201500086. Epub 2015 May 14.
9
Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.
ACS Nano. 2018 Mar 27;12(3):2546-2553. doi: 10.1021/acsnano.7b08345. Epub 2018 Feb 22.
10
Reciprocal Control of Hierarchical DNA Origami-Nanoparticle Assemblies.
Nano Lett. 2019 Dec 11;19(12):8469-8475. doi: 10.1021/acs.nanolett.9b02786. Epub 2019 Nov 6.

引用本文的文献

1
Realizing mechanical frustration at the nanoscale using DNA origami.
Nat Commun. 2025 Jun 4;16(1):5164. doi: 10.1038/s41467-025-60492-z.
2
Radiation and DNA Origami Nanotechnology: Probing Structural Integrity at the Nanoscale.
Chemphyschem. 2025 Jan 2;26(1):e202400863. doi: 10.1002/cphc.202400863. Epub 2024 Nov 20.

本文引用的文献

2
Topological Assembly of a Deployable Hoberman Flight Ring from DNA.
Small. 2021 Mar;17(11):e2007069. doi: 10.1002/smll.202007069. Epub 2021 Feb 22.
3
Absolute and arbitrary orientation of single-molecule shapes.
Science. 2021 Feb 19;371(6531). doi: 10.1126/science.abd6179.
4
Auxetic Two-Dimensional Nanostructures from DNA*.
Angew Chem Int Ed Engl. 2021 Mar 22;60(13):7165-7173. doi: 10.1002/anie.202014729. Epub 2021 Feb 22.
5
Robotic DNA Nanostructures.
ACS Synth Biol. 2020 Aug 21;9(8):1923-1940. doi: 10.1021/acssynbio.0c00235. Epub 2020 Jul 12.
6
Biophysical characterisation of DNA origami nanostructures reveals inaccessibility to intercalation binding sites.
Nanotechnology. 2020 Mar 20;31(23):235605. doi: 10.1088/1361-6528/ab7a2b. Epub 2020 Feb 26.
7
Mimicking Chemotactic Cell Migration with DNA Programmable Synthetic Vesicles.
Nano Lett. 2019 Dec 11;19(12):9138-9144. doi: 10.1021/acs.nanolett.9b04428. Epub 2019 Nov 19.
8
Advances in DNA Origami-Cell Interfaces.
Chembiochem. 2020 Jan 15;21(1-2):33-44. doi: 10.1002/cbic.201900481. Epub 2019 Nov 6.
9
Superstructure-Dependent Loading of DNA Origami Nanostructures with a Groove-Binding Drug.
ACS Omega. 2018 Aug 20;3(8):9441-9448. doi: 10.1021/acsomega.8b00934. eCollection 2018 Aug 31.
10
Anticooperative Binding Governs the Mechanics of Ethidium-Complexed DNA.
Biophys J. 2019 Apr 23;116(8):1394-1405. doi: 10.1016/j.bpj.2019.03.005. Epub 2019 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验