Gerlt Michael S, Läubli Nino F, Manser Michel, Nelson Bradley J, Dual Jürg
Department of Mechanical and Process Engineering, Institute for Mechanical Systems, 8092 Zurich, Switzerland.
Department of Mechanical and Process Engineering, Institute of Robotics and Intelligent Systems, 8092 Zurich, Switzerland.
Micromachines (Basel). 2021 May 10;12(5):542. doi: 10.3390/mi12050542.
Deep reactive ion etching (DRIE) with the Bosch process is one of the key procedures used to manufacture micron-sized structures for MEMS and microfluidic applications in silicon and, hence, of increasing importance for miniaturisation in biomedical research. While guaranteeing high aspect ratio structures and providing high design flexibility, the etching procedure suffers from reactive ion etching lag and often relies on complex oxide masks to enable deep etching. The reactive ion etching lag, leading to reduced etch depths for features exceeding an aspect ratio of 1:1, typically causes a height difference of above 10% for structures with aspect ratios ranging from 2.5:1 to 10:1, and, therefore, can significantly influence subsequent device functionality. In this work, we introduce an optimised two-step Bosch process that reduces the etch lag to below 1.5%. Furthermore, we demonstrate an improved three-step Bosch process, allowing the fabrication of structures with 6 μm width at depths up to 180 μm while maintaining their stability.
采用博世工艺的深度反应离子刻蚀(DRIE)是用于制造硅基MEMS和微流控应用中微米级结构的关键工艺之一,因此在生物医学研究小型化方面的重要性日益增加。虽然该刻蚀工艺能保证高纵横比结构并提供高度的设计灵活性,但它存在反应离子刻蚀滞后问题,且通常依赖复杂的氧化物掩膜来实现深蚀刻。反应离子刻蚀滞后会导致长宽比超过1:1的特征蚀刻深度减小,对于长宽比在2.5:1至10:1之间的结构,通常会造成10%以上的高度差,因此会显著影响后续器件功能。在这项工作中,我们引入了一种优化的两步博世工艺,将刻蚀滞后降低到1.5%以下。此外,我们还展示了一种改进的三步博世工艺,能够制造宽度为6μm、深度达180μm的结构,同时保持其稳定性。