Suppr超能文献

基于脑电图的情绪效价和情绪调节分类:一种以数据为中心且可解释的方法。

EEG-based emotional valence and emotion regulation classification: a data-centric and explainable approach.

机构信息

Molecular Mind Laboratory (MoMiLab), IMT School for Advanced Studies Lucca, Lucca, Italy.

Department of Information Engineering, University of Pisa, Pisa, Italy.

出版信息

Sci Rep. 2024 Oct 14;14(1):24046. doi: 10.1038/s41598-024-75263-x.

Abstract

Emotion classification using electroencephalographic (EEG) data is a challenging task in the field of Artificial Intelligence. While many researchers have focused on finding the best model or feature extraction technique to achieve optimal results, few have attempted to select the best methodological steps for working with the dataset. In this study, we applied two different theoretical approaches based on the noise of the dataset: curriculum learning and confident learning. Curriculum learning involves presenting training examples to the model in a specific order, starting with easier examples and gradually increasing in difficulty. This approach has been shown to improve model performance. Confident learning is a method for identifying and correcting label errors in datasets. By identifying and correcting these errors, confident learning can improve the performance of machine learning models trained on noisy datasets. We then applied the Integrated Gradient technique in order to assess the explainability of each model. Our aim was to explore the impact of different models and methods on emotion classification performance using EEG data. We collected and used an EEG dataset in which participants rated the emotional valence of positive and negative pictures while performing an emotion regulation (ER) task, comparing a control condition (Look) with two ER strategies: cognitive reappraisal and expressive suppression. We performed a multilabel classification to identify emotional neutrality or polarization of emotional valence (both positive and negative) rated by participants and the emotion regulation strategy adopted during the task. We compared the performance of models trained on three datasets selected based on label noise and evaluated their suitability for this task. Our results suggest different patterns based on the architecture used for feature importance, highlighting both advantages and criticisms.

摘要

基于脑电图(EEG)数据的情绪分类是人工智能领域中的一项具有挑战性的任务。虽然许多研究人员专注于寻找最佳的模型或特征提取技术以达到最佳效果,但很少有人尝试选择最佳的方法步骤来处理数据集。在这项研究中,我们应用了两种基于数据集噪声的不同理论方法:课程学习和置信学习。课程学习涉及以特定顺序向模型呈现训练示例,从较简单的示例开始,逐渐增加难度。这种方法已被证明可以提高模型性能。置信学习是一种识别和纠正数据集中标签错误的方法。通过识别和纠正这些错误,置信学习可以提高在噪声数据上训练的机器学习模型的性能。然后,我们应用了集成梯度技术来评估每个模型的可解释性。我们的目的是探索不同模型和方法对使用 EEG 数据进行情绪分类性能的影响。我们收集并使用了一个 EEG 数据集,其中参与者在执行情绪调节(ER)任务时对积极和消极图片的情绪效价进行评分,将对照条件(观察)与两种 ER 策略进行比较:认知重评和表达抑制。我们进行了多标签分类,以识别参与者评定的情绪中性或情绪效价的极化(包括积极和消极),以及在任务中采用的情绪调节策略。我们比较了基于标签噪声选择的三个数据集上训练的模型的性能,并评估了它们在这项任务中的适用性。我们的结果基于特征重要性所使用的架构显示出不同的模式,突出了优点和批评。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/110f/11473962/45a870ca0ab2/41598_2024_75263_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验