Autopia Program, Centre for Automation and Robotics, CSIC-UPM, Ctra. M300 Campo Real, Km 0.200, Arganda del Rey, 28500 Madrid, Spain.
Sensors (Basel). 2021 May 28;21(11):3755. doi: 10.3390/s21113755.
Safe and adaptable motion planning for autonomous vehicles remains an open problem in urban environments, where the variability of situations and behaviors may become intractable using rule-based approaches. This work proposes a use-case-independent motion planning algorithm that generates a set of possible trajectories and selects the best of them according to a merit function that combines longitudinal comfort, lateral comfort, safety and utility criteria. The system was tested in urban scenarios on simulated and real environments, and the results show that different driving styles can be achieved according to the priorities set in the merit function, always meeting safety and comfort parameters imposed by design.
安全且适应性强的自主车辆运动规划在城市环境中仍然是一个未解决的问题,在这种环境中,基于规则的方法可能无法处理情况和行为的可变性。这项工作提出了一种与用例无关的运动规划算法,该算法生成一组可能的轨迹,并根据组合了纵向舒适性、横向舒适性、安全性和实用性标准的优点函数选择最佳轨迹。该系统在模拟和真实环境的城市场景中进行了测试,结果表明,根据优点函数中设置的优先级,可以实现不同的驾驶风格,始终满足设计规定的安全和舒适性参数。