Gil Javier, Manero Jose Maria, Ruperez Elisa, Velasco-Ortega Eugenio, Jiménez-Guerra Alvaro, Ortiz-García Iván, Monsalve-Guil Loreto
Bioengineering Institute of Technology, International University of Catalonia, 08195-Sant Cugat del Vallés, 08017 Barcelona, Spain.
Department of Materials Science and Metallurgical Engineering, Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Polytechnic University of Catalonia (UPC), 08019 Barcelona, Spain.
Materials (Basel). 2021 May 27;14(11):2879. doi: 10.3390/ma14112879.
The surface modification by the formation of apatitic compounds, such as hydroxyapatite, improves biological fixation implants at an early stage after implantation. The structure, which is identical to mineral content of human bone, has the potential to be osteoinductive and/or osteoconductive materials. These calcium phosphates provoke the action of the cell signals that interact with the surface after implantation in order to quickly regenerate bone in contact with dental implants with mineral coating. A new generation of calcium phosphate coatings applied on the titanium surfaces of dental implants using laser, plasma-sprayed, laser-ablation, or electrochemical deposition processes produces that response. However, these modifications produce failures and bad responses in long-term behavior. Calcium phosphates films result in heterogeneous degradation due to the lack of crystallinity of the phosphates with a fast dissolution; conversely, the film presents cracks, which produce fractures in the coating. New thermochemical treatments have been developed to obtain biomimetic surfaces with calcium phosphate compounds that overcome the aforementioned problems. Among them, the chemical modification using biomineralization treatments has been extended to other materials, including composites, bioceramics, biopolymers, peptides, organic molecules, and other metallic materials, showing the potential for growing a calcium phosphate layer under biomimetic conditions.
通过形成磷灰石化合物(如羟基磷灰石)进行表面改性,可在植入后的早期改善植入物的生物固定。这种与人类骨骼矿物质含量相同的结构,有潜力成为骨诱导和/或骨传导材料。这些磷酸钙会引发细胞信号的作用,在植入后与表面相互作用,以便与带有矿物质涂层的牙科植入物接触的骨组织快速再生。使用激光、等离子喷涂、激光烧蚀或电化学沉积工艺在牙科植入物的钛表面上应用的新一代磷酸钙涂层会产生这种反应。然而,这些改性在长期行为中会产生失败和不良反应。由于磷酸盐缺乏结晶度且溶解迅速,磷酸钙膜会导致不均匀降解;相反,膜会出现裂纹,从而在涂层中产生断裂。已经开发出了新的热化学处理方法,以获得具有磷酸钙化合物的仿生表面,从而克服上述问题。其中,使用生物矿化处理的化学改性已扩展到其他材料,包括复合材料、生物陶瓷、生物聚合物、肽、有机分子和其他金属材料,显示出在仿生条件下生长磷酸钙层的潜力。