Suppr超能文献

基于计算机断层扫描的影像组学在COVID-19和病毒性肺炎诊断中的Meta分析

A Meta-Analysis of Computerized Tomography-Based Radiomics for the Diagnosis of COVID-19 and Viral Pneumonia.

作者信息

Kao Yung-Shuo, Lin Kun-Te

机构信息

Department of Radiation Oncology, China Medical University Hospital, Taichung City 404, Taiwan.

Department of Emergency Medicine, Changhua Christian Hospital, Changhua City, Changhua County 500, Taiwan.

出版信息

Diagnostics (Basel). 2021 May 29;11(6):991. doi: 10.3390/diagnostics11060991.

Abstract

INTRODUCTION

Coronavirus disease 2019 (COVID-19) led to a global pandemic. Although reverse transcription polymerase chain reaction (RT-PCR) of viral nucleic acid is the gold standard for COVID-19 diagnosis, its sensitivity was found to not be high enough in many reports. As radiomics-based diagnosis research has recently emerged, we aimed to use computerized tomography (CT)-based radiomics models to differentiate COVID-19 pneumonia from other viral pneumonia infections.

MATERIALS AND METHODS

This study was performed according to the preferred reporting items for systematic review and meta-analysis diagnostic test accuracy studies (PRISMA-DTA) guidelines. The Pubmed, Cochrane, and Embase databases were searched. The pooled sensitivity and pooled specificity were calculated. A summary receiver operating characteristic (sROC) curve was constructed. The study quality was evaluated based on the radiomics quality score.

RESULTS

A total of 10,300 patients were involved in this meta-analysis. The radiomics quality score ranged from 13 to 16 (maximum score: 36). The pooled sensitivity was 0.885 (95% CI: 0.818-0.929), and the pooled specificity was 0.811 (95% CI: 0.667-0.902). The pooled AUC was 906. Our meta-analysis showed that CT-based radiomics feature models can successfully differentiate COVID-19 from other viral pneumonias.

摘要

引言

2019年冠状病毒病(COVID-19)引发了全球大流行。尽管病毒核酸的逆转录聚合酶链反应(RT-PCR)是COVID-19诊断的金标准,但许多报告发现其灵敏度不够高。随着基于放射组学的诊断研究最近出现,我们旨在使用基于计算机断层扫描(CT)的放射组学模型来区分COVID-19肺炎与其他病毒性肺炎感染。

材料与方法

本研究按照系统评价和荟萃分析诊断试验准确性研究(PRISMA-DTA)指南进行。检索了PubMed、Cochrane和Embase数据库。计算合并灵敏度和合并特异性。构建汇总受试者工作特征(sROC)曲线。基于放射组学质量评分评估研究质量。

结果

共有10300名患者参与了这项荟萃分析。放射组学质量评分范围为13至16(最高分:36)。合并灵敏度为0.885(95%CI:0.818-0.929),合并特异性为0.811(95%CI:0.667-0.902)。合并AUC为906。我们的荟萃分析表明,基于CT的放射组学特征模型可以成功区分COVID-19与其他病毒性肺炎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3407/8229671/b94d7ad71bb3/diagnostics-11-00991-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验