School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, Henan, China.
School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, Henan, China.
Comput Intell Neurosci. 2022 Feb 15;2022:5582029. doi: 10.1155/2022/5582029. eCollection 2022.
The diagnosis of thyroid nodules at an early stage is a challenging task. Manual diagnosis of thyroid nodules is labor-intensive and time-consuming. Meanwhile, due to the difference of instruments and technical personnel, the original thyroid nodule ultrasound images collected are very different. In order to make better use of ultrasound image information of thyroid nodules, some image processing methods are indispensable. In this paper, we developed a method for automatic thyroid nodule classification based on image enhancement and deep neural networks. The selected image enhancement method is histogram equalization, and the neural networks have four-layer network nodes in our experiments. The dataset in this paper consists of thyroid nodule images of 508 patients. The data are divided into 80% training and 20% validation sets. A comparison result demonstrates that our method can achieve a better performance than other normal machine learning methods. The experimental results show that our method has achieved 0.901961 accuracy, 0.894737 precision, 1 recall, and 0.944444 F1-score. At the same time, we also considered the influence of network structure, activation function of network nodes, number of training iterations, and other factors on the classification results. The experimental results show that the optimal network structure is 2500-40-2-1, the optimal activation function is logistic function, and the best number of training iterations is 500.
早期甲状腺结节的诊断是一项具有挑战性的任务。手动诊断甲状腺结节既费时又费力。同时,由于仪器和技术人员的差异,采集到的原始甲状腺结节超声图像差异很大。为了更好地利用甲状腺结节的超声图像信息,一些图像处理方法是必不可少的。在本文中,我们开发了一种基于图像增强和深度神经网络的甲状腺结节自动分类方法。选择的图像增强方法是直方图均衡化,在我们的实验中,神经网络有四个网络节点。本文的数据集中包含 508 名患者的甲状腺结节图像。数据分为 80%的训练集和 20%的验证集。对比结果表明,我们的方法可以比其他普通机器学习方法取得更好的性能。实验结果表明,我们的方法达到了 0.901961 的准确率、0.894737 的精度、1 的召回率和 0.944444 的 F1 分数。同时,我们还考虑了网络结构、网络节点激活函数、训练迭代次数等因素对分类结果的影响。实验结果表明,最佳网络结构为 2500-40-2-1,最佳激活函数为逻辑函数,最佳训练迭代次数为 500。