Suppr超能文献

单分子量热仪和自由能景观。

Single-molecule calorimeter and free energy landscape.

机构信息

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287.

出版信息

Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2104598118.

Abstract

The precise measurement of thermodynamic and kinetic properties for biomolecules provides the detailed information for a multitude of applications in biochemistry, biosensing, and health care. However, sensitivity in characterizing the thermodynamic binding affinity down to a single molecule, such as the Gibbs free energy ([Formula: see text]), enthalpy ([Formula: see text]), and entropy ([Formula: see text]), has not materialized. Here, we develop a nanoparticle-based technique to probe the energetic contributions of single-molecule binding events, which introduces a focused laser of optical tweezer to an optical path of plasmonic imaging to accumulate and monitor the transient local heating. This single-molecule calorimeter uncovers the complex nature of molecular interactions and binding characterizations, which can be employed to identify the thermodynamic equilibrium state and determine the energetic components and complete thermodynamic profile of the free energy landscape. This sensing platform promises a breakthrough in measuring thermal effect at the single-molecule level and provides a thorough description of biomolecular specific interactions.

摘要

对生物分子的热力学和动力学性质进行精确测量,可为生物化学、生物传感和医疗保健的众多应用提供详细信息。然而,要将热力学结合亲和力的灵敏度降低到单个分子(如吉布斯自由能[Formula: see text]、焓[Formula: see text]和熵[Formula: see text]),这一目标尚未实现。在这里,我们开发了一种基于纳米颗粒的技术来探测单分子结合事件的能量贡献,该技术将聚焦的光镊激光引入等离子体成像的光路中,以积累和监测瞬态局部加热。这种单分子量热计揭示了分子相互作用和结合特性的复杂本质,可用于识别热力学平衡状态并确定自由能景观的能量组成和完整热力学分布。这个传感平台有望在单分子水平上测量热效应方面取得突破,并提供对生物分子特异性相互作用的全面描述。

相似文献

1
Single-molecule calorimeter and free energy landscape.单分子量热仪和自由能景观。
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2104598118.

引用本文的文献

6
Label-Free Optical Imaging of Nanoscale Single Entities.无标记光学成像纳米级单个体。
ACS Sens. 2024 Feb 23;9(2):543-554. doi: 10.1021/acssensors.3c02526. Epub 2024 Feb 12.

本文引用的文献

1
Plasmonic probing of the adhesion strength of single microbial cells.等离子体探测单细胞微生物细胞的粘附强度。
Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27148-27153. doi: 10.1073/pnas.2010136117. Epub 2020 Oct 15.
6
Measuring the activation energy barrier for the nucleation of single nanosized vapor bubbles.测量单纳米蒸汽泡成核的活化能垒。
Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12678-12683. doi: 10.1073/pnas.1903259116. Epub 2019 Jun 12.
7
Identification of Nanoparticles via Plasmonic Scattering Interferometry.通过等离子体散射干涉术识别纳米粒子。
Angew Chem Int Ed Engl. 2019 Mar 22;58(13):4217-4220. doi: 10.1002/anie.201813567. Epub 2019 Feb 19.
9
Interferometric plasmonic imaging and detection of single exosomes.干涉等离子体成像和单外泌体检测。
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10275-10280. doi: 10.1073/pnas.1804548115. Epub 2018 Sep 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验