State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287.
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2104598118.
The precise measurement of thermodynamic and kinetic properties for biomolecules provides the detailed information for a multitude of applications in biochemistry, biosensing, and health care. However, sensitivity in characterizing the thermodynamic binding affinity down to a single molecule, such as the Gibbs free energy ([Formula: see text]), enthalpy ([Formula: see text]), and entropy ([Formula: see text]), has not materialized. Here, we develop a nanoparticle-based technique to probe the energetic contributions of single-molecule binding events, which introduces a focused laser of optical tweezer to an optical path of plasmonic imaging to accumulate and monitor the transient local heating. This single-molecule calorimeter uncovers the complex nature of molecular interactions and binding characterizations, which can be employed to identify the thermodynamic equilibrium state and determine the energetic components and complete thermodynamic profile of the free energy landscape. This sensing platform promises a breakthrough in measuring thermal effect at the single-molecule level and provides a thorough description of biomolecular specific interactions.
对生物分子的热力学和动力学性质进行精确测量,可为生物化学、生物传感和医疗保健的众多应用提供详细信息。然而,要将热力学结合亲和力的灵敏度降低到单个分子(如吉布斯自由能[Formula: see text]、焓[Formula: see text]和熵[Formula: see text]),这一目标尚未实现。在这里,我们开发了一种基于纳米颗粒的技术来探测单分子结合事件的能量贡献,该技术将聚焦的光镊激光引入等离子体成像的光路中,以积累和监测瞬态局部加热。这种单分子量热计揭示了分子相互作用和结合特性的复杂本质,可用于识别热力学平衡状态并确定自由能景观的能量组成和完整热力学分布。这个传感平台有望在单分子水平上测量热效应方面取得突破,并提供对生物分子特异性相互作用的全面描述。