Suppr超能文献

干涉等离子体成像和单外泌体检测。

Interferometric plasmonic imaging and detection of single exosomes.

机构信息

Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030 Shanghai, China.

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210093 Nanjing, China.

出版信息

Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10275-10280. doi: 10.1073/pnas.1804548115. Epub 2018 Sep 24.

Abstract

Exosomes play an important role in numerous cellular processes. Fundamental study and practical use of exosomes are significantly constrained by the lack of analytical tools capable of physical and biochemical characterization. In this paper, we present an optical approach capable of imaging single exosomes in a label-free manner, using interferometric plasmonic microscopy. We demonstrate monitoring of the real-time adsorption of exosomes onto a chemically modified Au surface, calculating the image intensity, and determining the size distribution. The sizing capability enables us to quantitatively measure the membrane fusion activity between exosomes and liposomes. We also report the recording of the dynamic interaction between exosomes and antibodies at the single-exosome level, and the tracking of hit-stay-run behavior of exosomes on an antibody-coated surface. We anticipate that the proposed method will contribute to clinical exosome analysis and to the exploration of fundamental issues such as the exosome-antibody binding kinetics.

摘要

外泌体在许多细胞过程中发挥着重要作用。由于缺乏能够对其进行物理和生化特性分析的分析工具,对外泌体的基础研究和实际应用受到了显著限制。在本文中,我们提出了一种光学方法,该方法使用干涉等离子体显微镜能够以非标记的方式对单个外泌体进行成像。我们展示了对 exosomes 实时吸附到化学修饰的 Au 表面的监测,计算了图像强度,并确定了尺寸分布。该尺寸测量能力使我们能够定量测量 exosomes 和 liposomes 之间的膜融合活性。我们还报告了在单个外泌体水平上记录 exosomes 和抗体之间的动态相互作用,以及在外泌体在抗体包被表面上的 hit-stay-run 行为的跟踪。我们预计,所提出的方法将有助于临床外泌体分析,并有助于探索外泌体-抗体结合动力学等基本问题。

相似文献

1
Interferometric plasmonic imaging and detection of single exosomes.
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10275-10280. doi: 10.1073/pnas.1804548115. Epub 2018 Sep 24.
2
Determination of exosome concentration in solution using surface plasmon resonance spectroscopy.
Anal Chem. 2014 Jun 17;86(12):5929-36. doi: 10.1021/ac500931f. Epub 2014 Jun 5.
3
Label-Free Exosome Detection Based on a Low-Cost Plasmonic Biosensor Array Integrated with Microfluidics.
Langmuir. 2019 Jul 30;35(30):9816-9824. doi: 10.1021/acs.langmuir.9b01237. Epub 2019 Jul 16.
4
Detection and Characterization of Different Brain-Derived Subpopulations of Plasma Exosomes by Surface Plasmon Resonance Imaging.
Anal Chem. 2018 Aug 7;90(15):8873-8880. doi: 10.1021/acs.analchem.8b00941. Epub 2018 Jul 17.
5
Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor.
Nat Biotechnol. 2014 May;32(5):490-5. doi: 10.1038/nbt.2886. Epub 2014 Apr 20.
6
Label-free imaging and biomarker analysis of exosomes with plasmonic scattering microscopy.
Chem Sci. 2022 Oct 12;13(43):12760-12768. doi: 10.1039/d2sc05191e. eCollection 2022 Nov 9.
7
Optical and surface plasmonic approaches to characterize extracellular vesicles. A review.
Anal Chim Acta. 2018 Apr 16;1005:1-15. doi: 10.1016/j.aca.2017.11.066. Epub 2017 Dec 12.
8
Label-free detection of exosomes using a surface plasmon resonance biosensor.
Anal Bioanal Chem. 2019 Mar;411(7):1311-1318. doi: 10.1007/s00216-019-01608-5. Epub 2019 Feb 5.
9
Characterization of Extracellular Vesicles by Surface Plasmon Resonance.
Methods Mol Biol. 2017;1660:133-141. doi: 10.1007/978-1-4939-7253-1_11.

引用本文的文献

1
On the dilemma of using single EV analysis for liquid biopsy: the challenge of low abundance of tumor EVs in blood.
Theranostics. 2025 Jul 24;15(16):8031-8048. doi: 10.7150/thno.115131. eCollection 2025.
2
Plasmonic Nanostructures for Exosome Biosensing: Enabling High-Sensitivity Diagnostics.
Nanomaterials (Basel). 2025 Jul 25;15(15):1153. doi: 10.3390/nano15151153.
4
Nanophotonic sensing and label-free imaging of extracellular vesicles.
Light Sci Appl. 2025 Apr 28;14(1):177. doi: 10.1038/s41377-025-01866-2.
5
Innovative Applications of Nanopore Technology in Tumor Screening: An Exosome-Centric Approach.
Biosensors (Basel). 2025 Mar 21;15(4):199. doi: 10.3390/bios15040199.
6
Switching on Versatility: Recent Advances in Switchable Plasmonic Nanostructures.
Small Sci. 2023 Sep 10;3(10):2300048. doi: 10.1002/smsc.202300048. eCollection 2023 Oct.
7
Planar device-enabled speckle illumination for dark-field label-free imaging beyond the diffraction limit.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2423223122. doi: 10.1073/pnas.2423223122. Epub 2025 Feb 20.
8
Precise Sizing and Collision Detection of Functional Nanoparticles by Deep Learning Empowered Plasmonic Microscopy.
Adv Sci (Weinh). 2025 Mar;12(9):e2407432. doi: 10.1002/advs.202407432. Epub 2025 Jan 10.
9
Towards extracellular vesicle delivery systems for tissue regeneration: material design at the molecular level.
Extracell Vesicles Circ Nucl Acids. 2022 Oct 14;3(4):323-356. doi: 10.20517/evcna.2022.37. eCollection 2022.
10
Optical Imaging of Single Extracellular Vesicles: Recent Progress and Prospects.
Chem Biomed Imaging. 2023 Dec 15;2(1):27-46. doi: 10.1021/cbmi.3c00095. eCollection 2024 Jan 22.

本文引用的文献

2
Tracking fast cellular membrane dynamics with sub-nm accuracy in the normal direction.
Nanoscale. 2018 Mar 15;10(11):5133-5139. doi: 10.1039/c7nr09483c.
3
Protein Profiling and Sizing of Extracellular Vesicles from Colorectal Cancer Patients via Flow Cytometry.
ACS Nano. 2018 Jan 23;12(1):671-680. doi: 10.1021/acsnano.7b07782. Epub 2018 Jan 8.
4
Single molecule localization imaging of exosomes using blinking silicon quantum dots.
Nanotechnology. 2018 Feb 9;29(6):065705. doi: 10.1088/1361-6528/aaa375.
6
Cell-derived Exosomes as Promising Carriers for Drug Delivery and Targeted Therapy.
Curr Cancer Drug Targets. 2018;18(4):347-354. doi: 10.2174/1568009617666170710120311.
7
Achieving High Spatial Resolution Surface Plasmon Resonance Microscopy with Image Reconstruction.
Anal Chem. 2017 Mar 7;89(5):2704-2707. doi: 10.1021/acs.analchem.6b05049. Epub 2017 Feb 21.
8
Quantification of Exosomes.
J Cell Physiol. 2017 Jul;232(7):1587-1590. doi: 10.1002/jcp.25387. Epub 2017 Mar 1.
9
Communication by Extracellular Vesicles: Where We Are and Where We Need to Go.
Cell. 2016 Mar 10;164(6):1226-1232. doi: 10.1016/j.cell.2016.01.043.
10
Engineering hybrid exosomes by membrane fusion with liposomes.
Sci Rep. 2016 Feb 25;6:21933. doi: 10.1038/srep21933.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验