Suppr超能文献

一种简单的蒸气扩散法可实现在 HARE 串联结晶芯片内的蛋白质结晶。

A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip.

机构信息

Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany.

Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.

出版信息

Acta Crystallogr D Struct Biol. 2021 Jun 1;77(Pt 6):820-834. doi: 10.1107/S2059798321003855. Epub 2021 May 19.

Abstract

Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments, which depend on high-quality protein microcrystals. The batch crystallization procedures that are typically applied require time- and sample-intensive screening and optimization. Here, a simple protein crystallization method inside the features of the HARE serial crystallography chips is reported that circumvents batch crystallization and allows the direct transfer of canonical vapor-diffusion conditions to in-chip crystallization. Based on conventional hanging-drop vapor-diffusion experiments, the crystallization solution is distributed into the wells of the HARE chip and equilibrated against a reservoir with mother liquor. Using this simple method, high-quality microcrystals were generated with sufficient density for the structure determination of four different proteins. A new protein variant was crystallized using the protein concentrations encountered during canonical crystallization experiments, enabling structure determination from ∼55 µg of protein. Additionally, structure determination from intracellular crystals grown in insect cells cultured directly in the features of the HARE chips is demonstrated. In cellulo crystallization represents a comparatively unexplored space in crystallization, especially for proteins that are resistant to crystallization using conventional techniques, and eliminates any need for laborious protein purification. This in-chip technique avoids harvesting the sensitive crystals or any further physical handling of the crystal-containing cells. These proof-of-principle experiments indicate the potential of this method to become a simple alternative to batch crystallization approaches and also as a convenient extension to canonical crystallization screens.

摘要

固定靶串行晶体学已成为在同步加速器和 X 射线自由电子激光上研究蛋白质结构和动力学的重要方法。然而,样品均一性、消耗和对样品的物理压力仍然是这些高通量实验的主要挑战,这些实验依赖于高质量的蛋白质微晶体。通常应用的批量结晶程序需要时间和样品密集型的筛选和优化。这里报告了一种简单的蛋白质结晶方法,该方法利用 HARE 串行结晶芯片的特点,避免了批量结晶,并允许将经典的气相扩散条件直接转化为芯片内结晶。基于传统的悬滴气相扩散实验,将结晶溶液分配到 HARE 芯片的孔中,并与含有母液的储液器平衡。使用这种简单的方法,可以生成足够密度的高质量微晶体,用于四种不同蛋白质的结构测定。使用在经典结晶实验中遇到的蛋白质浓度,对一种新的蛋白质变体进行了结晶,从而可以从约 55μg 的蛋白质中进行结构测定。此外,还证明了直接在 HARE 芯片的特征中培养的昆虫细胞内晶体的结构测定。在细胞内结晶是结晶中一个相对未被探索的空间,特别是对于那些使用传统技术难以结晶的蛋白质,并且消除了对繁琐的蛋白质纯化的任何需求。这种芯片内技术避免了对敏感晶体的收获或对含晶体细胞的任何进一步物理处理。这些原理验证实验表明,该方法有可能成为批量结晶方法的简单替代方法,也可以作为经典结晶筛选的便捷扩展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c52/8171066/91d93cc4e73c/d-77-00820-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验