Suppr超能文献

技术支持的护理协调在复杂心理健康系统中的影响:一个局部系统动力学模型。

The Impact of Technology-Enabled Care Coordination in a Complex Mental Health System: A Local System Dynamics Model.

机构信息

Brain and Mind Centre, University of Sydney, Sydney, Australia.

Translational Health Research Institute, Western Sydney University, Sydney, Australia.

出版信息

J Med Internet Res. 2021 Jun 30;23(6):e25331. doi: 10.2196/25331.

Abstract

BACKGROUND

Prior to the COVID-19 pandemic, major shortcomings in the way mental health care systems were organized were impairing the delivery of effective care. The mental health impacts of the pandemic, the recession, and the resulting social dislocation will depend on the extent to which care systems will become overwhelmed and on the strategic investments made across the system to effectively respond.

OBJECTIVE

This study aimed to explore the impact of strengthening the mental health system through technology-enabled care coordination on mental health and suicide outcomes.

METHODS

A system dynamics model for the regional population catchment of North Coast New South Wales, Australia, was developed that incorporated defined pathways from social determinants of mental health to psychological distress, mental health care, and suicidal behavior. The model reproduced historic time series data across a range of outcomes and was used to evaluate the relative impact of a set of scenarios on attempted suicide (ie, self-harm hospitalizations), suicide deaths, mental health-related emergency department (ED) presentations, and psychological distress over the period from 2021 to 2030. These scenarios include (1) business as usual, (2) increase in service capacity growth rate by 20%, (3) standard telehealth, and (4) technology-enabled care coordination. Each scenario was tested using both pre- and post-COVID-19 social and economic conditions.

RESULTS

Technology-enabled care coordination was forecast to deliver a reduction in self-harm hospitalizations and suicide deaths by 6.71% (95% interval 5.63%-7.87%), mental health-related ED presentations by 10.33% (95% interval 8.58%-12.19%), and the prevalence of high psychological distress by 1.76 percentage points (95% interval 1.35-2.32 percentage points). Scenario testing demonstrated that increasing service capacity growth rate by 20% or standard telehealth had substantially lower impacts. This pattern of results was replicated under post-COVID-19 conditions with technology-enabled care coordination being the only tested scenario, which was forecast to reduce the negative impact of the pandemic on mental health and suicide.

CONCLUSIONS

The use of technology-enabled care coordination is likely to improve mental health and suicide outcomes. The substantially lower effectiveness of targeting individual components of the mental health system (ie, increasing service capacity growth rate by 20% or standard telehealth) reiterates that strengthening the whole system has the greatest impact on patient outcomes. Investments into more of the same types of programs and services alone will not be enough to improve outcomes; instead, new models of care and the digital infrastructure to support them and their integration are needed.

摘要

背景

在 COVID-19 大流行之前,精神卫生保健系统的组织方式存在重大缺陷,这影响了有效护理的提供。大流行、经济衰退以及由此导致的社会混乱对精神健康的影响将取决于护理系统承受能力的程度,以及整个系统为有效应对而进行的战略投资。

目的

本研究旨在探讨通过技术支持的护理协调来加强精神卫生系统对精神健康和自杀结果的影响。

方法

为澳大利亚新南威尔士州北岸地区的人口进行了系统动力学建模,该模型纳入了从精神健康的社会决定因素到心理困扰、精神卫生保健和自杀行为的明确途径。该模型再现了一系列结果的历史时间序列数据,并用于评估一组方案对企图自杀(即,自我伤害住院)、自杀死亡、与精神健康相关的急诊(ED)就诊和心理困扰的相对影响,时间范围为 2021 年至 2030 年。这些方案包括:(1)维持现状,(2)将服务能力增长率提高 20%,(3)标准远程医疗,和(4)技术支持的护理协调。在 COVID-19 前后的社会和经济条件下,对每个方案都进行了测试。

结果

预计技术支持的护理协调可将自我伤害住院和自杀死亡人数减少 6.71%(95%置信区间 5.63%-7.87%),与精神健康相关的 ED 就诊减少 10.33%(95%置信区间 8.58%-12.19%),以及高心理困扰的流行率降低 1.76 个百分点(95%置信区间 1.35%-2.32 个百分点)。方案测试表明,将服务能力增长率提高 20%或标准远程医疗的影响要低得多。在 COVID-19 条件下,该模式的结果得到了复制,技术支持的护理协调是唯一经过测试的方案,预计将减轻大流行对精神健康和自杀的负面影响。

结论

使用技术支持的护理协调可能会改善精神健康和自杀结果。针对精神卫生系统个别组成部分(即,将服务能力增长率提高 20%或标准远程医疗)的目标具有较低的效果,这再次强调了加强整个系统对患者结果的影响最大。仅投资于更多相同类型的计划和服务是不够的;相反,需要新的护理模式和支持它们的数字基础设施,以及它们的整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a649/8274674/945df3cc77f2/jmir_v23i6e25331_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验