Suppr超能文献

减少青少年自杀:系统建模和仿真以指导跨决定因素的有针对性投资。

Reducing youth suicide: systems modelling and simulation to guide targeted investments across the determinants.

机构信息

Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia.

Computer Simulation & Advanced Research Technologies (CSART), Sydney, Australia.

出版信息

BMC Med. 2021 Mar 12;19(1):61. doi: 10.1186/s12916-021-01935-4.

Abstract

BACKGROUND

Reducing suicidal behaviour (SB) is a critical public health issue globally. The complex interplay of social determinants, service system factors, population demographics, and behavioural dynamics makes it extraordinarily difficult for decision makers to determine the nature and balance of investments required to have the greatest impacts on SB. Real-world experimentation to establish the optimal targeting, timing, scale, frequency, and intensity of investments required across the determinants is unfeasible. Therefore, this study harnesses systems modelling and simulation to guide population-level decision making that represent best strategic allocation of limited resources.

METHODS

Using a participatory approach, and informed by a range of national, state, and local datasets, a system dynamics model was developed, tested, and validated for a regional population catchment. The model incorporated defined pathways from social determinants of mental health to psychological distress, mental health care, and SB. Intervention scenarios were investigated to forecast their impact on SB over a 20-year period.

RESULTS

A combination of social connectedness programs, technology-enabled coordinated care, post-attempt assertive aftercare, reductions in childhood adversity, and increasing youth employment projected the greatest impacts on SB, particularly in a youth population, reducing self-harm hospitalisations (suicide attempts) by 28.5% (95% interval 26.3-30.8%) and suicide deaths by 29.3% (95% interval 27.1-31.5%). Introducing additional interventions beyond the best performing suite of interventions produced only marginal improvement in population level impacts, highlighting that 'more is not necessarily better.'

CONCLUSION

Results indicate that targeted investments in addressing the social determinants and in mental health services provides the best opportunity to reduce SB and suicide. Systems modelling and simulation offers a robust approach to leveraging best available research, data, and expert knowledge in a way that helps decision makers respond to the unique characteristics and drivers of SB in their catchments and more effectively focus limited health resources.

摘要

背景

降低自杀行为(SB)是全球范围内一个至关重要的公共卫生问题。社会决定因素、服务系统因素、人口统计数据和行为动态之间的复杂相互作用,使得决策者极难确定为 SB 产生最大影响所需投资的性质和平衡。在现实世界中进行实验以确定在决定因素层面上所需投资的最佳目标、时机、规模、频率和强度是不切实际的。因此,本研究利用系统建模和模拟来指导人口层面的决策,代表对有限资源的最佳战略分配。

方法

本研究采用参与式方法,参考了一系列国家、州和地方数据集,为一个区域人口流域开发了一个系统动力学模型,并对其进行了测试和验证。该模型纳入了心理健康社会决定因素到心理困扰、精神卫生保健和 SB 的定义途径。研究了干预方案,以预测其在 20 年内对 SB 的影响。

结果

社会联系计划、技术支持的协调护理、尝试后果断的后续护理、减少儿童逆境以及增加青年就业的综合措施对 SB 产生了最大的影响,特别是在青年人群中,将自我伤害住院(自杀未遂)减少了 28.5%(95%置信区间 26.3-30.8%),自杀死亡减少了 29.3%(95%置信区间 27.1-31.5%)。在最佳干预措施套件之外引入更多干预措施仅对人口层面的影响产生了微小的改善,这表明“更多并不一定更好”。

结论

结果表明,有针对性地投资于解决社会决定因素和精神卫生服务提供了降低 SB 和自杀的最佳机会。系统建模和模拟提供了一种强有力的方法,可以利用最佳的现有研究、数据和专家知识,帮助决策者应对其流域中 SB 的独特特征和驱动因素,并更有效地集中有限的卫生资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eaf2/7953778/c05a47420cfb/12916_2021_1935_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验