Suppr超能文献

基于术中事件的梯度提升算法实现冠状动脉旁路移植术后结局的动态风险预测:改善风险预测。

Toward Dynamic Risk Prediction of Outcomes After Coronary Artery Bypass Graft: Improving Risk Prediction With Intraoperative Events Using Gradient Boosting.

机构信息

Center for Outcomes Research and Evaluation, Yale New Haven Hospital, CT (M.M., T.J.S.D., C.H., B.J.M., R.A.J, A.C., W.L.S., H.M.K).

Division of Cardiac Surgery, Department of Surgery (M.M., A.G.), Yale University School of Medicine, New Haven, CT.

出版信息

Circ Cardiovasc Qual Outcomes. 2021 Jun;14(6):e007363. doi: 10.1161/CIRCOUTCOMES.120.007363. Epub 2021 Jun 3.

Abstract

BACKGROUND

Intraoperative data may improve models predicting postoperative events. We evaluated the effect of incorporating intraoperative variables to the existing preoperative model on the predictive performance of the model for coronary artery bypass graft.

METHODS

We analyzed 378 572 isolated coronary artery bypass graft cases performed across 1083 centers, using the national Society of Thoracic Surgeons Adult Cardiac Surgery Database between 2014 and 2016. Outcomes were operative mortality, 5 postoperative complications, and composite representation of all events. We fitted models by logistic regression or extreme gradient boosting (XGBoost). For each modeling approach, we used preoperative only, intraoperative only, or pre+intraoperative variables. We developed 84 models with unique combinations of the 3 variable sets, 2 variable selection methods, 2 modeling approaches, and 7 outcomes. Each model was tested in 20 iterations of 70:30 stratified random splitting into development/testing samples. Model performances were evaluated on the testing dataset using the C statistic, area under the precision-recall curve, and calibration metrics, including the Brier score.

RESULTS

The mean patient age was 65.3 years, and 24.7% were women. Operative mortality, excluding intraoperative death, occurred in 1.9%. In all outcomes, models that considered pre+intraoperative variables demonstrated significantly improved Brier score and area under the precision-recall curve compared with models considering pre or intraoperative variables alone. XGBoost without external variable selection had the best C statistics, Brier score, and area under the precision-recall curve values in 4 of the 7 outcomes (mortality, renal failure, prolonged ventilation, and composite) compared with logistic regression models with or without variable selection. Based on the calibration plots, risk restratification for mortality showed that the logistic regression model underestimated the risk in 11 114 patients (9.8%) and overestimated in 12 005 patients (10.6%). In contrast, the XGBoost model underestimated the risk in 7218 patients (6.4%) and overestimated in 0 patients (0%).

CONCLUSIONS

In isolated coronary artery bypass graft, adding intraoperative variables to preoperative variables resulted in improved predictions of all 7 outcomes. Risk models based on XGBoost may provide a better prediction of adverse events to guide clinical care.

摘要

背景

术中数据可能会提高预测术后事件的模型的准确性。我们评估了将术中变量纳入现有术前模型对冠状动脉旁路移植术模型预测性能的影响。

方法

我们分析了 2014 年至 2016 年间,全国胸外科医师学会成人心脏手术数据库中 1083 个中心进行的 378572 例独立冠状动脉旁路移植术病例。结果为手术死亡率、5 种术后并发症和所有事件的综合表现。我们使用逻辑回归或极端梯度提升(XGBoost)进行模型拟合。对于每种建模方法,我们使用术前变量、术中变量或术前+术中变量。我们使用 3 组变量、2 种变量选择方法、2 种建模方法和 7 种结果的独特组合,开发了 84 个模型。每个模型在 20 次 70:30 分层随机拆分到开发/测试样本中进行测试。使用测试数据集上的 C 统计量、精度-召回曲线下面积和校准指标(包括 Brier 评分)评估模型性能。

结果

患者平均年龄为 65.3 岁,24.7%为女性。手术死亡率(不包括术中死亡)为 1.9%。在所有结果中,与仅考虑术前或术中变量的模型相比,考虑术前+术中变量的模型的 Brier 评分和精度-召回曲线下面积明显提高。在 7 种结果中的 4 种(死亡率、肾衰竭、延长通气和复合)中,不进行外部变量选择的 XGBoost 具有最佳的 C 统计量、Brier 评分和精度-召回曲线下面积值,而具有或不具有变量选择的逻辑回归模型。基于校准图,死亡率的风险再分层表明,逻辑回归模型低估了 11114 名患者(9.8%)的风险,高估了 12005 名患者(10.6%)的风险。相比之下,XGBoost 模型低估了 7218 名患者(6.4%)的风险,而没有高估任何患者(0%)的风险。

结论

在独立冠状动脉旁路移植术中,将术中变量添加到术前变量中可提高对所有 7 种结果的预测能力。基于 XGBoost 的风险模型可能会更好地预测不良事件,以指导临床护理。

相似文献

1
Toward Dynamic Risk Prediction of Outcomes After Coronary Artery Bypass Graft: Improving Risk Prediction With Intraoperative Events Using Gradient Boosting.
Circ Cardiovasc Qual Outcomes. 2021 Jun;14(6):e007363. doi: 10.1161/CIRCOUTCOMES.120.007363. Epub 2021 Jun 3.
3
Using machine learning to predict outcomes following suprainguinal bypass.
J Vasc Surg. 2024 Mar;79(3):593-608.e8. doi: 10.1016/j.jvs.2023.09.037. Epub 2023 Oct 5.
4
Pre-operative and intraoperative determinants for prolonged ventilation following adult cardiac surgery.
Acta Anaesthesiol Scand. 2012 Feb;56(2):190-9. doi: 10.1111/j.1399-6576.2011.02538.x. Epub 2011 Oct 14.
5
Unraveling the impact of time-dependent perioperative variables on 30-day readmission after coronary artery bypass surgery.
J Thorac Cardiovasc Surg. 2022 Sep;164(3):943-955.e7. doi: 10.1016/j.jtcvs.2020.09.076. Epub 2020 Sep 29.
6
Predictive Utility of a Machine Learning Algorithm in Estimating Mortality Risk in Cardiac Surgery.
Ann Thorac Surg. 2020 Jun;109(6):1811-1819. doi: 10.1016/j.athoracsur.2019.09.049. Epub 2019 Nov 7.
8
Machine Learning to Predict Outcomes and Cost by Phase of Care After Coronary Artery Bypass Grafting.
Ann Thorac Surg. 2022 Sep;114(3):711-719. doi: 10.1016/j.athoracsur.2021.08.040. Epub 2021 Sep 25.
9
Using machine learning to predict outcomes following carotid endarterectomy.
J Vasc Surg. 2023 Oct;78(4):973-987.e6. doi: 10.1016/j.jvs.2023.05.024. Epub 2023 May 20.

引用本文的文献

1
Towards a dynamic model to estimate evolving risk of major bleeding after percutaneous coronary intervention.
PLOS Digit Health. 2025 Jun 25;4(6):e0000906. doi: 10.1371/journal.pdig.0000906. eCollection 2025 Jun.
2
Machine learning-based hybrid risk estimation system (ERES) in cardiac surgery: Supplementary insights from the ASA score analysis.
PLOS Digit Health. 2025 Jun 23;4(6):e0000889. doi: 10.1371/journal.pdig.0000889. eCollection 2025 Jun.
3
Development and Validation of Machine Learning Models for Adverse Events after Cardiac Surgery.
medRxiv. 2025 Feb 25:2025.02.24.25322811. doi: 10.1101/2025.02.24.25322811.
5
Intraoperative Features Improve Model Risk Predictions After Coronary Artery Bypass Grafting.
Ann Thorac Surg Short Rep. 2024 Mar 7;2(3):336-340. doi: 10.1016/j.atssr.2024.02.005. eCollection 2024 Sep.
7
Tailoring Risk Prediction Models to Local Populations.
JAMA Cardiol. 2024 Nov 1;9(11):1018-1028. doi: 10.1001/jamacardio.2024.2912.
8
Multiple Layers of Care and Risk: Comparing Cross-Specialty Outcomes Using Regional, Hospital, and Patient-Level Data.
JACC Adv. 2022 Oct 28;1(4):100115. doi: 10.1016/j.jacadv.2022.100115. eCollection 2022 Oct.
10
The high-risk features among patients undergoing mitral valve operation for ischemic mitral regurgitation: The 3-strike score.
JTCVS Open. 2024 Mar 5;18:52-63. doi: 10.1016/j.xjon.2024.02.017. eCollection 2024 Apr.

本文引用的文献

1
Scalable and accurate deep learning with electronic health records.
NPJ Digit Med. 2018 May 8;1:18. doi: 10.1038/s41746-018-0029-1. eCollection 2018.
3
Tapping Into Underutilized Healthcare Data in Clinical Research.
Ann Surg. 2019 Aug;270(2):227-229. doi: 10.1097/SLA.0000000000003329.
4
Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia From the Electrocardiogram.
JAMA Cardiol. 2019 May 1;4(5):428-436. doi: 10.1001/jamacardio.2019.0640.
6
The Society of Thoracic Surgeons 2018 Adult Cardiac Surgery Risk Models: Part 1-Background, Design Considerations, and Model Development.
Ann Thorac Surg. 2018 May;105(5):1411-1418. doi: 10.1016/j.athoracsur.2018.03.002. Epub 2018 Mar 22.
8
Penetration, Completeness, and Representativeness of The Society of Thoracic Surgeons Adult Cardiac Surgery Database.
Ann Thorac Surg. 2016 Jan;101(1):33-41; discussion 41. doi: 10.1016/j.athoracsur.2015.08.055. Epub 2015 Nov 3.
9
The Net Reclassification Index (NRI): a Misleading Measure of Prediction Improvement Even with Independent Test Data Sets.
Stat Biosci. 2015 Oct 1;7(2):282-295. doi: 10.1007/s12561-014-9118-0. Epub 2014 Aug 23.
10
Disrupting Electronic Health Records Systems: The Next Generation.
JMIR Med Inform. 2015 Oct 23;3(4):e34. doi: 10.2196/medinform.4192.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验