高强度肌肉刺激会激活全身性的由Nrf2介导的氧化还原应激反应。
High intensity muscle stimulation activates a systemic Nrf2-mediated redox stress response.
作者信息
Ostrom Ethan L, Valencia Ana P, Marcinek David J, Traustadóttir Tinna
机构信息
Department of Biological Sciences, Northern Arizona University, United States.
Department of Radiology, University of Washington School of Medicine, United States.
出版信息
Free Radic Biol Med. 2021 Aug 20;172:82-89. doi: 10.1016/j.freeradbiomed.2021.05.039. Epub 2021 Jun 3.
High intensity exercise is a popular mode of exercise to elicit similar or greater adaptive responses compared to traditional moderate intensity continuous exercise. However, the molecular mechanisms underlying these adaptive responses are still unclear. The purpose of this pilot study was to compare high and low intensity contractile stimulus on the Nrf2-mediated redox stress response in mouse skeletal muscle. An intra-animal design was used to control for variations in individual responses to muscle stimulation by comparing a stimulated limb (STIM) to the contralateral unstimulated control limb (CON). High Intensity (HI - 100Hz), Low Intensity (LI - 50Hz), and Naïve Control (NC - Mock stimulation vs CON) groups were used to compare these effects on Nrf2-ARE binding, Keap1 protein, and downstream gene and protein expression of Nrf2 target genes. Muscle stimulation significantly increased Nrf2-ARE binding in LI-STIM compared to LI-CON (p = 0.0098), while Nrf2-ARE binding was elevated in both HI-CON and HI-STIM compared to NC (p = 0.0007). The Nrf2-ARE results were mirrored in the downregulation of Keap1, where Keap1 expression in HI-CON and HI-STIM were both significantly lower than NC (p = 0.008) and decreased in LI-STIM compared to LI-CON (p = 0.015). In addition, stimulation increased NQO1 protein compared to contralateral control regardless of stimulation intensity (p = 0.019), and HO1 protein was significantly higher in high intensity compared to the Naïve control group (p = 0.002). Taken together, these data suggest a systemic redox signaling exerkine is activating Nrf2-ARE binding and is intensity gated, where Nrf2-ARE activation in contralateral control limbs were only seen in the HI group. Other research in exercise induced Nrf2 signaling support the general finding that Nrf2 is activated in peripheral tissues in response to exercise, however the specific exerkine responsible for the systemic signaling effects is not known. Future work should aim to delineate these redox sensitive systemic signaling mechanisms.
与传统的中等强度持续运动相比,高强度运动是一种能引发相似或更强适应性反应的流行运动方式。然而,这些适应性反应背后的分子机制仍不清楚。这项初步研究的目的是比较高低强度收缩刺激对小鼠骨骼肌中Nrf2介导的氧化还原应激反应的影响。采用动物体内设计,通过将受刺激肢体(STIM)与对侧未受刺激的对照肢体(CON)进行比较,来控制个体对肌肉刺激反应的差异。使用高强度(HI - 100Hz)、低强度(LI - 50Hz)和单纯对照组(NC - 与CON相比为模拟刺激)来比较这些对Nrf2-ARE结合、Keap1蛋白以及Nrf2靶基因的下游基因和蛋白表达的影响。与LI-CON相比,肌肉刺激使LI-STIM中的Nrf2-ARE结合显著增加(p = 0.0098),而与NC相比,HI-CON和HI-STIM中的Nrf2-ARE结合均升高(p = 0.0007)。Nrf2-ARE的结果在Keap1的下调中得到体现,其中HI-CON和HI-STIM中的Keap1表达均显著低于NC(p = 0.008),并且与LI-CON相比,LI-STIM中的Keap1表达降低(p = 0.015)。此外,无论刺激强度如何,与对侧对照相比,刺激均增加了NQO1蛋白(p = 0.019),并且与单纯对照组相比,高强度组中的HO1蛋白显著更高(p = 0.002)。综上所述,这些数据表明一种系统性氧化还原信号运动因子正在激活Nrf2-ARE结合并且是强度门控的,其中仅在HI组中观察到对侧对照肢体中的Nrf2-ARE激活。运动诱导Nrf2信号传导的其他研究支持了这一普遍发现,即Nrf2在周围组织中因运动而被激活,然而负责系统性信号传导效应的具体运动因子尚不清楚。未来的工作应旨在阐明这些氧化还原敏感的系统性信号传导机制。
相似文献
Free Radic Biol Med. 2021-8-20
Acta Neuropathol Commun. 2016-10-31
Free Radic Biol Med. 2010-8-11
引用本文的文献
Antioxidants (Basel). 2024-7-22
Pflugers Arch. 2023-7
Am J Transl Res. 2022-11-15
Int J Mol Sci. 2022-11-25
Antioxidants (Basel). 2021-10-27
本文引用的文献
J Appl Physiol (1985). 2021-1-1
Free Radic Biol Med. 2020-11-20
Int J Sports Med. 2020-5-26
Antioxidants (Basel). 2020-4-15
Oxid Med Cell Longev. 2019-11-16
Am J Physiol Cell Physiol. 2019-11-27