Suppr超能文献

机器学习预测模型的特征重要性展示了药物设计中结构活跃部分和重要的物理化学特征。

Feature importance of machine learning prediction models shows structurally active part and important physicochemical features in drug design.

机构信息

Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan.

出版信息

Drug Metab Pharmacokinet. 2021 Aug;39:100401. doi: 10.1016/j.dmpk.2021.100401. Epub 2021 May 3.

Abstract

The objective of this study was to obtain the indicators of physicochemical parameters and structurally active sites to design new chemical entities with desirable pharmacokinetic profiles by investigating the process by which machine learning prediction models arrive at their decisions, which are called explainable artificial intelligence. First, we developed the prediction models for metabolic stability, CYP inhibition, and P-gp and BCRP substrate recognition using 265 physicochemical parameters for designing the molecular structures. Four important parameters, including the well-known indicator h_logD, are common in some in vitro studies; as such, these can be used to optimize compounds simultaneously to address multiple pharmacokinetic concerns. Next, we developed machine learning models that had been programmed to show structurally active sites. Many types of machine learning models were developed using the results of in vitro metabolic stability study of around 30000 in-house compounds. The metabolic sites of in-house compounds predicted using some prediction models matched experimentally identified metabolically active sites, with a ratio of number of metabolic sites (predicted/actual) of over 90%. These models can be applied to several screening projects. These two approaches can be employed for obtaining lead compounds with desirable pharmacokinetic profiles efficiently.

摘要

本研究旨在通过研究机器学习预测模型做出决策的过程(即可解释的人工智能),获得理化参数指标和结构活性位点,设计具有理想药代动力学特征的新化学实体。首先,我们使用 265 个理化参数开发了用于设计分子结构的代谢稳定性、CYP 抑制、P-gp 和 BCRP 底物识别的预测模型。其中包括众所周知的 h_logD 等 4 个重要参数,这些参数在一些体外研究中是常见的;因此,可以同时优化化合物以解决多个药代动力学问题。接下来,我们开发了能够显示结构活性位点的机器学习模型。使用大约 30000 个内部化合物的体外代谢稳定性研究结果,开发了多种类型的机器学习模型。使用一些预测模型预测的内部化合物的代谢位点与实验鉴定的代谢活跃位点相匹配,预测代谢位点与实际代谢位点的比值超过 90%。这些模型可应用于几个筛选项目。这两种方法可用于有效地获得具有理想药代动力学特征的先导化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验