Park Nammi, Marquez Jubert, Garcia Maria Victoria Faith, Shimizu Ippei, Lee Sung Ryul, Kim Hyoung Kyu, Han Jin
Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea.
Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea.
J Lipid Atheroscler. 2021 May;10(2):223-239. doi: 10.12997/jla.2021.10.2.223. Epub 2021 Jan 19.
Ischemic cardiomyopathy (ICM) is the leading cause of heart failure. Proteomic and genomic studies have demonstrated ischemic preconditioning (IPC) can assert cardioprotection against ICM through mitochondrial function regulation. Considering IPC is conducted in a relatively brief period, regulation of protein expression also occurs very rapidly, highlighting the importance of protein function modulation by post-translational modifications. This study aimed to identify and analyze novel phosphorylated mitochondrial proteins that can be harnessed for therapeutic strategies for preventing ischemia/reperfusion (I/R) injury.
Sprague-Dawley rat hearts were used in an Langendorff system to simulate normal perfusion, I/R, and IPC condition, after which the samples were prepared for phosphoproteomic analysis. Employing human cardiomyocyte AC16 cells, we investigated the cardioprotective role of CKMT2 through overexpression and how site-directed mutagenesis of putative CKMT2 phosphorylation sites (Y159A, Y255A, and Y368A) can affect cardioprotection by measuring CKMT2 protein activity, mitochondrial function and protein expression changes.
The phosphoproteomic analysis revealed dephosphorylation of mitochondrial creatine kinase (CKMT2) during ischemia and I/R, while preserving its phosphorylated state during IPC. CKMT2 overexpression conferred cardioprotection against hypoxia/reoxygenation (H/R) by increasing cell viability and mitochondrial adenosine triphosphate level, preserving mitochondrial membrane potential, and reduced reactive oxygen species (ROS) generation, while phosphomutations, especially in Y368, nullified cardioprotection by significantly reducing cell viability and increasing ROS production during H/R. CKMT2 overexpression increased mitochondrial function by mediating the proliferator-activated receptor γ coactivator-1α/estrogen-related receptor-α pathway, and these effects were mostly inhibited by Y368A mutation.
These results suggest that regulation of quantitative expression and phosphorylation site Y368 of CKMT2 offers a unique mechanism in future ICM therapeutics.
缺血性心肌病(ICM)是心力衰竭的主要原因。蛋白质组学和基因组学研究表明,缺血预处理(IPC)可通过调节线粒体功能对ICM发挥心脏保护作用。鉴于IPC在相对较短的时间内进行,蛋白质表达的调节也非常迅速,这突出了翻译后修饰对蛋白质功能调节的重要性。本研究旨在鉴定和分析可用于预防缺血/再灌注(I/R)损伤治疗策略的新型磷酸化线粒体蛋白。
在Langendorff系统中使用Sprague-Dawley大鼠心脏模拟正常灌注、I/R和IPC条件,然后制备样品进行磷酸蛋白质组分析。利用人心肌细胞AC16细胞,我们通过过表达研究了CKMT2的心脏保护作用,以及通过测量CKMT2蛋白活性、线粒体功能和蛋白质表达变化,推定的CKMT2磷酸化位点(Y159A、Y255A和Y368A)的定点诱变如何影响心脏保护作用。
磷酸蛋白质组分析显示,缺血和I/R期间线粒体肌酸激酶(CKMT2)发生去磷酸化,而在IPC期间保持其磷酸化状态。CKMT2过表达通过增加细胞活力和线粒体三磷酸腺苷水平、维持线粒体膜电位以及减少活性氧(ROS)生成,对缺氧/复氧(H/R)发挥心脏保护作用,而磷酸化突变,尤其是Y368位点的突变,通过在H/R期间显著降低细胞活力和增加ROS产生而使心脏保护作用无效。CKMT2过表达通过介导增殖激活受体γ共激活因子-1α/雌激素相关受体-α途径增加线粒体功能,而这些作用大多被Y368A突变抑制。
这些结果表明,CKMT2定量表达和磷酸化位点Y368的调节为未来ICM治疗提供了一种独特的机制。