IEEE Trans Neural Netw Learn Syst. 2022 Nov;33(11):6856-6866. doi: 10.1109/TNNLS.2021.3083710. Epub 2022 Oct 27.
The brain-computer interface (BCI) P300 speller analyzes the P300 signals from the brain to achieve direct communication between humans and machines, which can assist patients with severe disabilities to control external machines or robots to complete expected tasks. Therefore, the classification method of P300 signals plays an important role in the development of BCI systems and technologies. In this article, a novel ensemble support vector recurrent neural network (E-SVRNN) framework is proposed and developed to acquire more accurate and efficient electroencephalogram (EEG) signal classification results. First, we construct a support vector machine (SVM) to formulate EEG signals recognizing model. Second, the SVM formulation is transformed into a standard convex quadratic programming (QP) problem. Third, the convex QP problem is solved by combining a varying parameter recurrent neural network (VPRNN) with a penalty function. Experimental results on BCI competition II and BCI competition III datasets demonstrate that the proposed E-SVRNN framework can achieve accuracy rates as high as 100% and 99%, respectively. In addition, the results of comparison experiments verify that the proposed E-SVRNN possesses the best recognition accuracy and information transfer rate (ITR) compared with most of the state-of-the-art algorithms.
脑机接口(BCI)P300 拼写器分析大脑中的 P300 信号,以实现人机之间的直接通信,从而帮助严重残疾的患者控制外部机器或机器人来完成预期的任务。因此,P300 信号的分类方法在 BCI 系统和技术的发展中起着重要的作用。在本文中,提出并开发了一种新颖的集成支持向量循环神经网络(E-SVRNN)框架,以获得更准确和高效的脑电图(EEG)信号分类结果。首先,我们构建一个支持向量机(SVM)来制定 EEG 信号识别模型。其次,将 SVM 公式转换为标准凸二次规划(QP)问题。然后,通过将变参数递归神经网络(VPRNN)与惩罚函数相结合来解决凸 QP 问题。在 BCI 竞赛 II 和 BCI 竞赛 III 数据集上的实验结果表明,所提出的 E-SVRNN 框架可以分别达到 100%和 99%的准确率。此外,对比实验的结果验证了与大多数最先进的算法相比,所提出的 E-SVRNN 具有最佳的识别精度和信息传输率(ITR)。